

Lecture 19

Topics: Chapter 9. Simulation and Design
● Moving to graphics library
9.4.1 Unit Testing
9.5 Other Design Techniques

When we finish writing a function (a component of a program) it is
good to give it a good testing. This process is called unit testing.

Testing each function independently makes it easier to spot an
error. By the time we get around to testing the entire program,
chances are that everything will work smoothly.

9.4.1 Unit Testing

When we finish writing a function (a component of a program) it is
good to give it a good testing. This process is called unit testing.

Testing each function independently makes it easier to spot an
error. By the time we get around to testing the entire program,
chances are that everything will work smoothly.

Separating concerns through a modular design makes it possible to
design sophisticated programs.

9.4.1 Unit Testing

When we finish writing a function (a component of a program) it is
good to give it a good testing. This process is called unit testing.

Testing each function independently makes it easier to spot an
error. By the time we get around to testing the entire program,
chances are that everything will work smoothly.

Separating concerns through a modular design makes it possible to
design sophisticated programs.

Separating concerns through unit testing makes it possible to
implement and debug sophisticated programs.

9.4.1 Unit Testing

When we finish writing a function (a component of a program) it is
good to give it a good testing. This process is called unit testing.

Testing each function independently makes it easier to spot an
error. By the time we get around to testing the entire program,
chances are that everything will work smoothly.

Separating concerns through a modular design makes it possible to
design sophisticated programs.

Separating concerns through unit testing makes it possible to
implement and debug sophisticated programs.

These programs work will less overall effort and far less frustration.

9.4.1 Unit Testing

Racquetball game

We should test the following methods/functions:

1. input()

2. simOneGame(Pa,Pb)

3. simNgames(n,Pa,Pb)

4. report(n,WinsA,WinsB)

9.4.1 Unit Testing

Sometimes we can get stuck with the top-down design
(i.e. cannot refine one of the steps; or the original specification is so
complicated that refining it level-by-level is way too hard)

Another approach to design is to start with a simple version of a
program (or a program's component) and then try gradually to add
features until it meets the full specification.

9.5 Other Design Techniques

The initial stripped-down version is called a prototype.

Prototyping often leads to a sort of spiral development process:

● we design, implement and test a prototype, then

● new features are designed, implemented and tested, and

● we make many mini-cycles through the development process as
the prototype is incrementally expanded into final program.

9.5 Other Design Techniques

The initial stripped-down version is called a prototype.

Prototyping often leads to a sort of spiral development process:

● we design, implement and test a prototype, then

● new features are designed, implemented and tested, and

● we make many mini-cycles through the development process as
the prototype is incrementally expanded into final program.

Spiral development is particularly useful when dealing with new or
unfamiliar features or technologies.

It is helpful to try it out - just see what can we do.
 Sometimes for novice programmer everything
 may seem new, so prototyping might prove useful.

9.5 Other Design Techniques

It is important to note though that spiral development is not an
alternative to top-down design.

They are complementary approaches.

When designing the prototype, you will still use the top-down
techniques.

Later you'll see another design techniques.

9.5 Other Design Techniques

Craps game

Craps game is a dice game played at many casinos. A player rolls
a pair of normal six-sided dice. If the initial roll is 2, 3, or 12, the
player loses. If the roll is 7 or 11, the player wins. Any other initial
roll causes the player to “roll for point”. That is, the player keeps
rolling the dice until either rolling a 7 or re-rolling the value of the
initial roll. If the player re-rolls the initial value before rolling a 7, it’s
a win. Rolling a 7 first is a loss.
Write a program to simulate multiple games of craps and estimate
the probability that the player wins. For example, if the player wins
249 out of 500 games, then the estimated probability is 249/500 =
0.498 or 49.8%.

User will be prompted for the number of games.

Lecture 18 In-class assignment

Lecture 18 In-class assignment

Sketch of the main function:
def main():

Intro() # print an introduction

n = getInput() # get input from the user

 # simulate n games,
 # return the result of simulation

wins = simNgames(n)

report(n,Wins) # report back to the user

Lecture 18 In-class assignment

main

Intro get-input reportsimNGames

simOneGame

n

wins

wins

n

1| 0

structure chart

Craps game

In-class and homework assignment:

implement the text version of the craps game

make it fool proof (take care of “bad” input)

you may work in groups

Optional: make graphics version (after you finish working on the
text version)

Here is a little help:

Lecture 18 In-class assignment

Craps game
You can define the function simOnegame() (that is, simulate one
game) as follows:

Start by rolling two dice:

sumDice = randrange(1,7) + randrange(1,7)

Then store the result you got into some new variable sumDice0.

Then if sumDice == 2 or sumDice == 3 or sumDice == 12, return “loss”

Otherwise if sumDice == 7 or sumDice == 11, return “win”

Otherwise, while true, keep rolling dice using

sumDice = randrange(1,7) + randrange(1,7) as before. Then,

if sumDice == sumDice0, return “win” and break

if sumDice == 7, return “loss” and break

Then you only need to iterate using a for loop and count the results.

Lecture 18 In-class assignment

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

