
 1

Lecture 18

Topics: Chapter 9. Simulation and Design
9.2 Pseudo-random numbers
9.1 Simulating Racquetball
9.3 Top-Down Design
9.4 Bottom-Up Implementation

 2

There is nothing random about computers, they are instruction-
following machines.

So the numbers that we get with the help of computers are called
pseudo-random numbers.

9.2 Pseudo-random numbers

 3

There is nothing random about computers, they are instruction-
following machines.

So the numbers that we get with the help of computers are called
pseudo-random numbers.

The idea of the pseudo-random number generator:
● start with some seed value,
● feed into a function to produce a «random» number,
● next time the random number is needed, the current value is fed

back into the function to produce a new number.

The function has to be carefully chosen.

9.2 Pseudo-random numbers

 4

There is nothing random about computers, they are instruction-
following machines.

So the numbers that we get with the help of computers are called
pseudo-random numbers.

Python provides a library module random that contains a number of
useful functions for generating pseudo-random numbers.
The functions in this module derive an initial seed value from the
date and time when the module is loaded, so each time the
program is run we get a different seed value.

9.2 Pseudo-random numbers

 5

Random module
Few functions of interest to us:

randrange([start], stop[, step])
– returns a randomly selected element from range(start, stop, step);
does not actually build a range object

randint(a,b)
– returns a random integer N such that a N b.
alias for randrange(a, b+1).

random()
– returns the next random floating point number in the range [0.0,
1.0)

9.2 Pseudo-random numbers

 6

Random module
A few functions of interest to us:

choice(seq)
– returns a random element from the non-empty sequence seq.
If seq is empty, raises IndexError.

shuffle(x[, random])
– shuffles the sequence x. Note that it does not produce an output,
rather it modifies the original sequence x.
The optional argument random is a 0-argument function returning a
random float in [0.0, 1.0); by default, this is the function random().

More can be found here:
https://docs.python.org/3.1/library/random.html

9.2 Pseudo-random numbers

https://docs.python.org/3.1/library/random.html

 7

We have almost all tools to solve interesting problems, i.e. the ones
that are difficult or impossible to solve without the ability to write
and implement computer algorithms.

Simulation – is one of techniques for solving real-world problems

Examples of problems that are solved with computer
simulation:

● Weather prediction,
● Aircraft design,
● Video games,
● Etc.

9.1 Simulating Racquetball

 8

Let's develop/write a program that will be a simple simulation of the
racquetball game.

Racquetball is a sport played between two players using racquets to
strike a ball in a four-walled court.

To start the game, one of the players puts the ball into play (called
serving). The players then alternate hitting the ball to keep it in play.

This is a rally. The rally ends when one of the players fails to hit a
legal shot. The player who misses the shot loses the rally.

If the player who served loses the rally, then service passes to the
other player.

If the player who served wins the rally, a point is awarded. Players
can only score points during their own service.

The first player to reach 15 points wins the game.

Two video demonstrations: https://youtu.be/A-uHQxcxVa0
https://youtu.be/WveNMboopls

9.1 Simulating Racquetball

https://youtu.be/A-uHQxcxVa0
https://youtu.be/WveNMboopls

 9

Simulation of the racquetball game

Summary:

Two players,

Four-walled court,

Serving and receiving,

The rally ends when one of the players fails to hit a legal shot,

The player who misses the shot loses the rally,

If the server loses the rally, then service passes to the other player,

If the server wins the rally, a point is awarded,

Players can only score points during their own service,

The first player to reach 15 points wins the game.

9.1 Simulating Racquetball

 10

Simulation of the racquetball game

Why do we want to simulate this play? What is of interest for us?

- the correspondence between ability-level of the players and the
number of wins.

Is it true that if one of the players plays slightly better than the other,
he/she should win slightly more games?

9.1 Simulating Racquetball

 11

Simulation of the racquetball game

Why do we want to simulate this play? What is of interest for us?

- the correspondence between ability-level of the players and the
number of wins.

Is it true that if one of the players plays slightly better than the other,
he/she should win slightly more games?

Convention: the ability-level of players will be represented by the
probability that the player wins the rally when he or she serves.

P
A
 – the probability that the player A wins on his/her serve

P
B
 – the probability that the player B wins on his/her serve

9.1 Simulating Racquetball

 12

Simulation of the racquetball game

Specification:
Input:

the service probabilities of two players
the number of games to be simulated

Output:
the number of games simulated
the number of wins for Player A

(and what percent of the total number of games is it)
the number of wins for Player B

(and what percent of the total number of games is it)

Assumption:
in each game player A serves first

9.1 Simulating Racquetball

 13

Idea:

● start with the general problem and try to express a solution in
terms of smaller problems, i.e. break the original problem into sub-
problems;

● apply the same technique to each smaller sub-problem;

● eventually the problems get so small that they are trivial to
solve.

9.3 Top-Down Design

 14

Simulation of the racquetball game

print an introduction
get Pa and Pb
get n (the number of games)
simulate n games using Pa and Pb
print the report on the wins for Player A and Player B

9.3 Top-Down Design

 15

Simulation of the racquetball game

print an introduction easy (code it!) Intro()
get Pa and Pb
get n (the number of games)
simulate n games using Pa and Pb
print the report on the wins for Player A and Player B

9.3 Top-Down Design

 16

Simulation of the racquetball game

print an introduction easy (code it!) Intro()
get Pa and Pb easy (code it!) getInput() returns
get n (the number of games) easy (code it!) Pa, Pb, n
simulate n games using Pa and Pb
print the report on the wins for Player A and Player B

9.3 Top-Down Design

 17

Simulation of the racquetball game

print an introduction easy (code it!) Intro()
get Pa and Pb easy (code it!) getInput() returns
get n (the number of games) easy (code it!) Pa, Pb, n
simulate n games using Pa and Pb break into smaller sub-problems

 simNgames(n,Pa,Pb) returns WinsA and WinsB

print the report on the wins for Player A and Player B

9.3 Top-Down Design

 18

Simulation of the racquetball game

print an introduction easy (code it!) Intro()
get Pa and Pb easy (code it!) getInput() returns
get n (the number of games) easy (code it!) Pa, Pb, n
simulate n games using Pa and Pb break into smaller sub-problems

 simNgames(n,Pa,Pb) returns WinsA and WinsB
 simOneGame(Pa,Pb) returns 1 if Player A wins, and 0 otherwise

easy (code it!)

print the report on the wins for Player A and Player B

9.3 Top-Down Design

 19

Simulation of the racquetball game

print an introduction easy (code it!) Intro()
get Pa and Pb easy (code it!) getInput() returns
get n (the number of games) easy (code it!) Pa, Pb, n
simulate n games using Pa and Pb break into smaller sub-problems

 simNgames(n,Pa,Pb) returns WinsA and WinsB
 simOneGame(Pa,Pb) returns 1 if Player A wins, and 0 otherwise

easy (code it!)

print the report on the wins for Player A and Player B
easy (code it!) report(n,wA,wB)

9.3 Top-Down Design

 20

Simulation of the racquetball game

def main():
Intro() # print an introduction

Pa, Pb, n = getInput() # get input from the user

 # simulate n games,
 # return the result of simulation

WinsA, WinsB = simNgames(n,Pa,Pb)

report(n,WinsA,WinsB) # report back to the user

We outlined the sub-parts of the main function and the relationships
between them (what is returned by each function, what is supplied as
an argument to each function, which function goes after which)

9.3 Top-Down Design

 21

Simulation of the racquetball game

def main():
Intro() # print an introduction

Pa, Pb, n = getInput() # get input from the user

 # simulate n games,
 # return the result of simulation

WinsA, WinsB = simNgames(n,Pa,Pb)

report(n,WinsA,WinsB) # report back to the user

At each level of design we need to determine important
characteristics of something and ignore other details

(called abstraction)

9.3 Top-Down Design

 22

Simulation of the racquetball game

We implement three methods:

Intro()
GetInput()
report(n,wA,wB)

9.3 Top-Down Design

see program racquetball.py

 23

simOneGame(Pa,Pb)

- returns 1 if Player A wins, and 0 otherwise

- players keep doing rallies until somebody collects 15 ponts: this
suggests an infinite loop

- we need to keep the track of players' scores (scoreA, scoreB)

- How to deal with probabilities? Where to apply them?

9.3 Top-Down Design

 24

simOneGame(Pa,Pb)

- returns 1 if Player A wins, and 0 otherwise

- players keep doing rallies until somebody collects 15 ponts: this
suggests an infinite loop

- we need to keep the track of players' scores (scoreA, scoreB)

- How to deal with probabilities? Where to apply them?

set serving to Player A
scoreA = 0
scoreB = 0
while scoreA != 15 or scoreB != 15

simulate one serving
update the status of the game

return who wins(1 or 0)

9.3 Top-Down Design

and

 25

simOneGame(Pa,Pb) - Probabilities

Let's talk about probabilities:
what does it mean to have a probability of 70%?

9.3 Top-Down Design

 26

simOneGame(Pa,Pb) - Probabilities

Let's talk about probabilities:
what does it mean to have a probability of 70%?

Suppose we generate a number between 0 and 1.

9.3 Top-Down Design

0 10.5 0.750.25

 27

simOneGame(Pa,Pb) - Probabilities

Let's talk about probabilities:
what does it mean to have a probability of 70%?

Suppose we generate a number between 0 and 1.

Exactly 70% of the interval 0 ... 1 is to the left of 0.7.
So 70% of time the random number will be < 0.7, and it will be 0.7 in
other 30% of the time.

9.3 Top-Down Design

0 10.5 0.750.25

 28

simOneGame(Pa,Pb) - Probabilities

Let's talk about probabilities:
what does it mean to have a probability of 70%?

Suppose we generate a number between 0 and 1.

Exactly 70% of the interval 0 ... 1 is to the left of 0.7.
So 70% of time the random number will be < 0.7, and it will be 0.7 in
other 30% of the time.

Therefore let's use the following piece of code
if random() < prob:

score += 1

9.3 Top-Down Design

0 10.5 0.750.25

 29

simOneGame(Pa,Pb) - Probabilities

We proceed to the implementation of simOneGame

Followed by the implementation of simNGames

9.3 Top-Down Design

see program racquetball.py

 30

Simulation of the racquetball game

9.3 Top-Down Design

main

Intro get-input reportsimNGames

simOneGame

Pa,
Pb, n

WinsA,
WinsB

WinsA,
WinsB

Pa,
Pb, n

Pa, Pb
1| 0

structure chart

 31

Simulation of the racquetball game

Did you notice that our implementation started with “easy” sub-sub-....-sub
parts?

- this is called bottom-up implementation

Each implemented sub-sub...-sub part needs thorough testing, called unit
testing

9.4 Bottom-Up Implementation

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

