

Lecture 17

Topics: Chapter 8. Loop Structures and Booleans
8.3 (Continues) nested loops
8.4. Computing with booleans
8.5 Other common structures: post-test, loop and half.

Nested Loops

Loops may contain loops. Let's take a look at the program that
reads in all the numbers from a file, where numbers are separated
by a white space or by a “next line” character.:

1 2 34 12 0 -12 23
3 5 456 23 09 8
1 4 -23 45 -89

8.3 Common Loop Patterns

Nested Loops

Loops may contain loops. Let's take a look at the program that
reads in all the numbers from a file, where numbers are separated
by a white space or by a “next line” character.:

1 2 34 12 0 -12 23
3 5 456 23 09 8
1 4 -23 45 -89

8.3 Common Loop Patterns

numbers = [] #list of all numbers from the file

for line in Source:# iterate over lines in file
 nums_in_line=line.split() #split by space

 for item in nums_in_line: # iterate over items
 numbers.append(int(item)) # in line

See program read_all_numbers.py

8.4 Computing with booleans

Now we have two control structures, if and while, that use
conditions, which are Boolean expressions.

Boolean expression is either True (1) or False (0).

So far we used expressions that compare two values:
>=, <=, !=, ==, >, <

in the last program (read_all_numbers.py) you saw: ... and ...

8.4 Computing with booleans

Boolean operators

Are used to combine Boolean expressions to get a new Boolean
expression:
AND () <expr1> and <expr2> <expr1> && <expr2>
OR () <expr1> or <expr2> <expr1> || <expr2>
NOT (¯ , ¬) not <expr> !<expr>

and and or are binary operators, not is a unary operator.

The and of two expressions is true when both expressions are
true.
The or of two expressions is true when at least one of the
expressions is true.
The not operator computes the opposite of a Boolean expression.

8.4 Computing with booleans

Truth tables for boolean operators

P Q P and Q

T T T
T F F
F T F
F F F

P Q P or Q

T T T
T F T
F T T
F F F

P not P

T F
F T

Precedence rules (from high to low): not, and, or

Example:
a and b or not a and b is equivalent to (a and b) or ((not a) and b)

8.4 Computing with booleans

Properties of boolean operations

Distributive rules:
a or (b and c) = (a or b) and (a or c)
a and (b or c) = (a and b) or (a and c)

A double negation rule: not (not a) = a

DeMorgan's laws:
not(a or b) = (not a) and (not b)
not(a and b) = (not a) or (not b)

Boolean algebra (Boolean logic) is the algebra of truth values and
operations on them. It was developed by George Boole in the late
1830s.

One application of Boolean algebra is the analysis and
simplification of Boolean expressions.

8.4 Computing with booleans

Example:
Let's write a program that takes a temperature value as an input,
and output where it is hot, warm, cold or freezing today.
Assume that if it is above 90F then it is hot;
if it is between 70F and 90F, then it is warm;
it it is between 32F and 70F, then it is cold;
and if it is bellow 32F then it is freezing.

8.4 Computing with booleans

Example:
Let's write a program that takes a temperature value as an input,
and output where it is hot, warm, cold or freezing today.
Assume that if it is above 90F then it is hot;
if it is between 70F and 90F, then it is warm;
it it is between 32F and 70F, then it is cold;
and if it is bellow 32F then it is freezing.

if T > 90
output HOT

if 70 <= T <= 90
output WARM

if 32 <= T < 70
output COLD

if T < 32
output FREEZING

8.4 Computing with booleans

Example:
Let's write a program that takes a temperature value as an input,
and output where it is hot, warm, cold or freezing today.
Assume that if it is above 90F then it is hot;
if it is between 70F and 90F, then it is warm;
it it is between 32F and 70F, then it is cold;
and if it is bellow 32F then it is freezing.

if T > 90
output HOT

if T <= 90 and T >= 70
output WARM

if T < 70 and T >= 32
output COLD

if T < 32
output FREEZING

see temperature.py

8.4 Computing with booleans

Example:
Let's write a program that takes a temperature value as an input,
and output where it is hot, warm, cold or freezing today.
Assume that if it is above 90F then it is hot;
if it is between 70F and 90F, then it is warm;
it it is between 32F and 70F, then it is cold;
and if it is bellow 32F then it is freezing.

if T > 90
output HOT

if T <= 90 and T >= 70
output WARM

if T < 70 and T >= 32
output COLD

if T < 32
output FREEZING

see
temperature_infiniteLoop.py

if we want to allow user
to enter temperatures as
many times as he/she
wants we will use
indefinite loop

8.5 Other common structures: post-test, loop and half

Post-test loop

Syntax could be:
repeat

<body>
until <condition>

- The condition test comes after the loop body
(the body of the loop is always executed

at least once)

<condition>

<body>

no

yes

The decision structure (if) along with the infinite (pre-test) loop
(while loop) provide a complete set of control structures.
Every algorithm can be expressed using just these.

However, sometimes, for certain kinds of problems, alternative
structures are more convenient.

Post-test loop

We can simulate the post-test loop:

Initialize the variable(s) that are used in the while's condition to
such value(s) that the while loop is entered.

OR

Use while True and break statement

while True is an infinite loop, condition is always true.
break statement terminates a loop

8.5 Other common structures: post-test, loop and half

Post-test loop

We can simulate the post-test loop:

Initialize the variable(s) that are used in the while's condition to
such value(s) that the while loop is entered.

see programs from previous lecture:
average_i.py answer = "yes"
 while answer[0]=='y':

average_s.py next_value=0
 while next_value != -1000:

average_s_mod.py ns='0'
 while ns != "":

8.5 Other common structures: post-test, loop and half

Post-test loop

We can simulate the post-test loop in at least two ways.
For example: let us ask the user for a positive number. If the number is
not positive, keep asking.

1) “Seed” the loop by initializing number to enter loop:
number = -1
while number < 0:

number = float(input(“Enter a positive number:”))

2) Use break:
While True:

number = float(input(“Enter a positive number:”))
if number >= 0:

break

8.5 Other common structures: post-test, loop and half

Post-test loop

Try to avoid peppering the body of the loop with multiple break
statements, because the logic of the loop might be lost.

However, there are times when this rule should be broken to
provide most elegant solution.

8.5 Other common structures: post-test, loop and half

Loop and a half

This is very similar to the last example. The only difference is that the
break statement is in the middle of the loop:

while True:
number = float(input(“Enter a positive number:“))
if number > 0: break
print(“The number you entered is not positive.”)

You can see that the input is processed, if necessary, after the break
statement.

8.5 Other common structures: post-test, loop and half

A note about booleans

In python, every nonzero, or nonempty, literal is converted into
boolean as True. The function bool(lit) gives the boolean value
of. Check the output of:

bool(“yes”)
bool(“no”)
bool(“”)
bool([])
bool([1,2])
bool(0)

So for example, if we know that n is number, the statement
if n != 0:
is equivalent to
if n:

8.5 Other common structures: post-test, loop and half

A note about booleans

Also note: In python, booleans expressions are evaluated left to right,
following the rules:

x and y If x is false, return x. Otherwise return y.
x or y If x is true, return x. Otherwise return y.

Note that if x is returned, then y is not evaluated at all, so it is better to
always put the condition that is easier to evaluate first.

This also gives curious ways of doing things. For example, the
expression

ans = False or “Pizza”

always evaluates to “Pizza”.

8.5 Other common structures: post-test, loop and half

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

