

Lecture 13

Topics: Chapter 5. Computing with strings
5.8 Input/output as string manipulation
5.9 File processing

5.8 Input/output as string manipulation

What did we do so far with print method:

1. We can specify an end of line:

print("One")
print("Two")
print("Three")

OUTPUT:

One
Two
Three

print("One", end =' ')
print("Two", end =" ")
print("Three")

OUTPUT:

One Two Three

print("One",end ='ay')
print("Two",end ="ho")
print("Three")

OUTPUT:

OneayTwohoThree

5.8 Input/output as string manipulation

What did we do so far with print method:

1. We can specify an end of line:
Note that you can put anything you like inside the quotes:

print("One",end ='ay')
print("Two",end ="ho")
print("Three")

OUTPUT:

OneayTwohoThree

5.8 Input/output as string manipulation

What did we do so far with print method:

2. We can specify an item separator:

print(“Hello”,”How”,”are”,”you”,”today?”,sep=“***”)

result: Hello***How***are***you***today?

5.8 Input/output as string manipulation

What did we do so far with print method:

3. We can use escape characters:
\n New line
\t Tabulation (skips few spaces)
\' Single quote will be printed
\” Double quote will be printed
\\ Backslash character will be printed

Example: print(“One \t two \t \”three\””)

Result: One two "three"

Exercise: print the following sentences in a python shell:
The symbol \ is called ‘backslash’.
“’” is a single quote, whereas “”” is a double quote

5.8 Input/output as string manipulation

String formatting

Basic string operations can be used to build nicely formatted output,
but building up a complex output can be tedious.

Python provides a powerful string formatting operation.

type in the following in the interactive window:
>>> total=12.567
>>> print(“The total value is ${0:0.2f}. Good
buy!”.format(total))
The total value is $12.57. Good buy!
>>>

String formatting operator:

<template-string>.format(<values>),

formatting specifier has the following general form:
{<index>:<format-specifier>}

index: Tells which of the values is inserted into the slot.
format-specifier: <width>.<precision><type>

width: Number of spaces to use in displaying value.
(0 means «use as much space as needed»)

precision: How many decimal places (rounds off)

type: Format types:

d decimal integer
f float we will see more
s string

5.8 Input/output as string manipulation

5.8 Input/output as string manipulation

String formatting

Type the following in the interactive window:
>>> “Good day {0} {1}, you have ${2} on your
account balance.”.format('Mr.','Smith',150000)
'Good day Mr. Smith, you have $150000 on your
account balance'

>>> “This integer number, {0:8}, was placed in a
field of width 8”.format(12)
'This integer number, 12, was placed in a
field of width 8'

5.8 Input/output as string manipulation

String formatting

Type the following in the interactive window:
>>> ”This decimal number, {0}, was rounded of to
three decimal places: {0:.3f}”.format(3.141592654)

OUTPUT: 'This decimal number, 3.141592654, was
rounded of to three decimal places: 3.142'

Now try

>>> ”This decimal number, {0}, was rounded of to
three decimal places: {0:.30f}”.format(3.14)

>>> ”This decimal number, {0}, was rounded of to
three decimal places: {0:.2}”.format(33.14)

>>> ”This decimal number, {0}, was rounded of to
three decimal places: {0:.2}”.format(33.14)

5.8 Input/output as string manipulation
String formatting

Type the following in the interactive window:

>>> num,denom=3.123,4.234
>>> print("{0:.2f} / {1:.2f}= {2:.2f}".format(num,
denom, num/denom))
3.12 / 4.23= 0.74

>>>print(format(num,'.2f'),"/",format(denom,'.2f'),
"=",format(num/denom,'.2f'))
3.12 / 4.23 = 0.74

same results!

The built-in format function takes two arguments:
A numeric value, and
A format specifier

5.8 Input/output as string manipulation

String formatting

Type the following in the interactive window:
>>> n=23
>>> print("{0:4d}".format(n))
 23

>>> print(format(n,'4d'))
 23

5.8 Input/output as string manipulation

Conversion Meaning

'd' Signed decimal integer.

'i' Signed decimal integer.

'o' Signed octal integer.

'x' Signed hexadecimal integer (lowercase).

'X' Signed hexadecimal integer (uppercase).

'e' Floating point exponential format (lowercase).

'E' Floating point exponential format (uppercase).

'f' or 'F' Floating point decimal format.

'c' Single character (accepts integer or single
character string).

's' String (converts any Python object using str()).

5.9 File processing

Programs must be able to read data from file and to write data to
files. It is especially needed when we have a large volume of data.

Python supports a built-in class file to manipulate files on the
computer.

Constructor of Python's file class accepts two parameters:
● file name (as string), and
● access mode (as string, optional)

r – for reading (default mode)
w – for (over)writing
a – for appending to the end of the file

5.9 File processing

Constructor of Python's file class accepts two parameters:
● file name (as string), and
● access mode (as string, optional)

r – for reading (default mode)
w – for (over)writing
a – for appending to the end of the file

Example:

file1 = open('inputData.txt')
→ File inputData will be open in read-only mode

file2 = open('outputData.txt','w')
→ File outputData will be open for writing (re-writing)

5.9 File processing

Selected behaviors of Python's file class:

Syntax Semantics

open() Returns a file object (two arguments)

close() Disconnects the file object from the
associated file (saving it, if necessary)

flush() Flushes the buffer of written characters,
saving the underlying file

read() Returns a string representing the (remaining)
contents of the file

read(size) Returns a string representing the specified
number of bytes next in the file

readline() Returns a string representing the next line of
the file

readlines() Returns a list of strings representing the
remaining lines of the file

write(s) Writes the given string to the file.
No newlines are added.

writelines(seq) Writes each of the strings to the file.
No newlines are added.

for line in f Iterates through the file~f, one line at a time

5.9 File processing

Example 1: Let's open a file and display everything it has.

See programs readAllFromFile.py and readAllFromFile_mod.py

data.txt:
12 23
14 45
-4 -20
-15 -60
15 40
17 60
-10 -48

numbers.txt
1 3 2 4 6 5 2 3

names.txt
Maria 6
Anna 7
Alex 10
Frank 11
Uma 6
Nicholas 13

5.9 File processing

Example 2: Let's generate data this time: write a program than
generates n pairs of values (x,y), where x  [-100,100] and y 
[0,1000] randomly. n is provided by the user.
These pairs of values are stored in a file “outData.txt”.

Design / algorithm:
open a file
prompt for n
for i in range(n)

generate x-value, record into a file adding space at the end
generate y-value, record into a file adding “end of line”

close file

see program createDataFile.py

5.9 File processing

Example 3: Let's process the data from file “outData.txt”: find the
average of x-values and y-values separately

Design / algorithm:
open a file
sumX =0 for sum of x-values, sumY = 0 for sum of y-values
counter = 0 for counting pairs
for line in file

split line into two parts,
convert each part to integer value (x and y)
sumX += x
sumY += y
counter += 1

output sumX / counter and sumY / counter
close file

see program processDataFile.py

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

