
 1

Lecture 11

Topics: Chapter 5. Computing with strings
5.1 The String Data Type
5.2 Simple String Processing
5.3 Lists as Sequences

 2

5.1 String data type

Text is represented in programs by the string data type.

Think of string as a sequence of characters (symbols).

>>> string1=''Hello''
>>> string2='Hello'
>>> type(string1)
<class 'str'>
>>> type(string2)
<class 'str'>

 3

Inputting strings:
Use input function: input

– Doesn't evaluate the expression the user enters.
(use raw_input in Python 2)

Example:
def main()

f_name = input(''Enter your name, please:'')
print(''Good day, '', f_name)

main()

If we run the program and type in name Caroline, then we'll get:
Good day, Caroline

5.1 String data type

 4

String is a sequence of characters/symbols, thus we can access the
individual characters/symbols through indexing:

indexing is used in string expressions to access a specific character
position in the string.

Syntax:
<string>[<expression>]

I T I S S U N N Y T O D A Y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5.1 String data type

 5

Type the following in the interactive window:
>>> phrase = ''It is sunny today''
>>> phrase[0]
'I'
>>> phrase[2]
' '
>>> phrase[10]
'y'

5.1 String data type

Positive indexing: from the left end to the right end
Negative indexing: from the right end to the left end

>>> phrase[-1]

>>> phrase[-5]

 6

It is also possible to access a contiguous sequence of characters
(substring) using the colon operator (:)
Syntax:
<string>[<start>:<end>]

>>> phrase = ''It is sunny today''
>>> phrase[3:10]
'is sunn'
>>> phrase[:3]
'It '
>>> phrase[11:]
' today'

NOTE: negative numbers count from the end:
>> phrase[11:-2]
' tod'

5.1 String data type

 7

There is also a double colon operator (::):
Syntax:
<string>[<start>:<end>:<step>]

>>> phrase = ''It is sunny today''
>>> phrase[0:10:2]
'I ssn'

Or backwards!
>>> phrase[::-1]
'yadot ynnus si tI'

In all slots, when empty, it means the default
value:

0 for <start>,
The length of the string for <end>
1 for <step>

5.1 String data type

 8

More operations with strings:

Concatenation: + Example: string1+string2
Repetition: * Example: string1*string2
Length of a string: len Example: len(string1)

Iteration through characters: for <var> in <string>
Example: for i in 'Hello John'

In a Python shell, write
string1 = “Whatever you like”
for ch in string 1:

print(ch)

5.1 String data type

 9

5.2 Simple string processing

Let's write a program that will be printing out the name of the
month in short form.
In other words, the user will enter the number of the month, and
our program will output the month in short form.

Recall the months names and their numbers:
1 Jan 7 Jul
2 Feb 8 Aug
3 Mar 9 Sep
4 Apr 10 Oct
5 May 11 Nov
6 Jun 12 Dec

 10

5.2 Simple string processing

Let's write a program that will be printing out the name of the
month in short form.
In other words, the user will enter the number of the month, and
our program will output the month in short form.

Recall the months names and their numbers:
1 Jan 7 Jul
2 Feb 8 Aug
3 Mar 9 Sep
4 Apr 10 Oct
5 May 11 Nov
6 Jun 12 Dec

What Python's tools to use? 1. Use if-elif-else or 2. Use strings

 11

5.2 Simple string processing

1. Use if-elif-else statements.

Algorithm:

input the number if the month (n)
if n=1: output Jan
elif n=2: output Feb
elif n=3: output Mar
...
elif n=12: output Dec
else : wrong number of the month

 12

5.2 Simple string processing

2. Use strings

months='JanFebMarAprMayJunJulAugSepOctNovDec'

Algorithm:
Input the number of a month (n)
Output the slice/piece of the months string:
 3 characters long,
 Starting from ((n-1)*3)th position

For example:
To get Jan (n=1), print(months[0:3])
To get Feb (n=2), print(months[4:6])
To get Mar (n=3), print(months[7:9])

 (what is the pattern?)

 13

List data type in Python represents a sequence of elements, which
are values of any Python data type.

We can work with lists of strings, list of integers, list of values of
mixed data type, etc.

Syntax: [list of elements separated by commas]

Examples: [1, 2, 3, 4, 5, 6]
 [1, ’a’, “Hi, how are you?”, 132, 5.6]

All the string operations listed before are applicable to sequences
(lists).

5.3 Lists as Sequences

 14

Type the following in the interactive window:

>>> [1,5] + [2,8]
[1, 5, 2, 8]

>>>[1,5]*4
[1, 5, 1, 5, 1, 5, 1, 5]

>>> list_of_grades=['A','B','C','D','F']
>>> list_of_grades[0]
'A'
>>> list_of_grades[3]
'D'
>>> list_of_grades[2:4]
['C', 'D']
>>> len(list_of_grades)
5

5.3 Lists as Sequences

 15

Lists are more general than strings: they can be sequences of
arbitrary values, not just characters

myList=[1,''January'',2,''February'',3,''Hello'']

Using lists we can re-write our program for months and make it
easier to retrieve months full names by their number:
months=["January","February","March","April",
"May","June","July","August","September",
"October", "November","December"]

Now it is easy!
n = eval(input(“Enter the number of the month”))
print(months[n-1])

see program months_lists.py

5.3 Lists as Sequences

 16

! Lists are mutable, i.e. the value of an item in a list can be
modified with an assignment statement.

Example:
myList=[1,''Thank you'',5]
myList[2]=''Hello''

the resulting list: [1,''Thank you'',''Hello'']

On the contrary, strings are NOT mutable!

Try to write in a shell:
string1 = “Whatever”
string1[0] = “H”

5.3 Lists as Sequences

 17

Matrices (lists of lists)

[Def] A matrix is a rectangular array of numbers.
A matrix with m rows and n columns is called m  n matrix.

Plural form: matrices Notation: A
m  n

Matrix with m = n is called square matrix

A=[
1 4 −9
0 1 3
7 −2 8
0 −1 5

] matrix with 4
rows and 3
columns

5.3 Lists as Sequences

 18

Matrices (lists of lists)

a
ij
 – element of matrix in row i and column j

A=[
1 4 −9
0 1 3
7 −2 8
0 −1 5

]
4th

1st
2nd
3rd

1st 2nd 3rd

5.3 Lists as Sequences

 19

Matrices (lists of lists)

a
ij
 – element of matrix in row i and column j

A=[
1 4 −9
0 1 3
7 −2 8
0 −1 5

]
a

12
 = 4

a
21

 = 0
a

42
 = -1

1st 2nd 3rd

4th

1st
2nd
3rd

5.3 Lists as Sequences

 20

Matrices in Python

A=[
1 4 −9
0 1 3
7 −2 8
0 −1 5

]
In Python interactive window:
>>> A = [[1,4,-9], [0,1,3], [7,-2,8], [0,-1,5]]

>>> A[0][1]
4
>>> A[1][0]
0

3rd

0th
1st
2nd

0th 1st 2nd

a
12

 = 4
a

21
 = 0

a
42

 = -1

a
01

 = 4
a

10
 = 0

a
31

 = -1

5.3 Lists as Sequences

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

