
 1

Lecture 10

Topics: Chapter 4. Objects and Graphics
4.6 Choosing coordinates
4.7 Interactive Graphics

 2

4.6 Choosing coordinates

We discussed that the graphical window coordinates are different
from regular rectangular coordinates system. Hence, when we draw
anything using graphics library, we have to keep in mind, that the
origin is at the top left corner of the window:

O
x

y
O x

y

convert

 3

4.6 Choosing coordinates

We discussed that the graphical window coordinates are different
from regular rectangular coordinates system. Hence, when we draw
anything using graphics library, we have to keep in mind, that the
origin is at the top left corner of the window:

O
x

y
O x

y

convert

Another issue: Imagine, that we decided to write a program of tic-
tac-toe. We'll start with drawing of 3 rows and 3 columns (i.e. two
horizontal lines and two vertical lines). At this point we will have to
decide what are the coordinates of the lines, depending on what are
 the dimensions of the window (the size).

 4

4.6 Choosing coordinates

setCoords

To ease our life class GraphWin allows us to specify a coordinate
system for the window using the setCoords method.

setCoords(xll,yll,xur,yur)

All subsequent drawings will be done with respect to the altered
coordinate system (except for plotPixel)

the lower left corner
x- and y-coordinates

the upper right corner
x- and y-coordinates

see tic-tac-toe_begin.py

 5

4.7 Interactive Graphics

More practice with mouse clicks

Recall getMouse method:
- when it is invoked the program pauses and waits the user to click
the mouse somewhere in the graphics window, then the spot where
the user clicks returned to the program as Point.

 6

4.7 Interactive Graphics

More practice with mouse clicks

Recall getMouse method:
- when it is invoked the program pauses and waits the user to click
the mouse somewhere in the graphics window, then the spot where
the user clicks returned to the program as Point.

Quadrilateral:
 Let's write a program that asks the user to click a mouse 4 times
then draws a quadrilateral with corners at the clicked points:
quadrilateral.py

 7

4.7 Interactive Graphics

More practice with mouse clicks
Quadrilateral:
Let's write a program that asks the user to click a mouse 4 times
then draws a quadrilateral with corners at the clicked points:
quadrilateral.py

Design/Algorithm:

p_1=win.getMouse()
p_2=win.getMouse()
p_3=win.getMouse()
p_4=win.getMouse()
define polygon by 4 points,
draw polygon

 See the program quadrilateral.py

 8

4.7 Interactive Graphics

Events

Graphical interfaces can be used for input as well as output.

Usually in a GUI environment we can click on buttons, choose
items from menus, type information into on-screen text boxes, and
so on.

 9

4.7 Interactive Graphics

Events

Graphical interfaces can be used for input as well as output.

Usually in a GUI environment we can click on buttons, choose
items from menus, type information into on-screen text boxes, and
so on.

When the user moves the mouse, clicks on a button or types a key
on the keyboards, this generates an event. This event object is
further sent to an appropriate part of the program to be processed.
Then the appropriate action will be taken.

 10

4.7 Interactive Graphics

Event-driven programming

Event-driven programming can be tricky for novice programmers,
since it is hard to figure out «who's in charge» at any given
moment.

Our graphics module hides the underlying event-handling
mechanism and provides two simple ways of getting user input in a
GraphWin:
● mouse clicks
● textual input

 11

4.7 Interactive Graphics

Event-driven programming

Event-driven programming can be tricky for novice programmers,
since it is hard to figure out «who's in charge» at any given
moment.

Our graphics module hides the underlying event-handling
mechanism and provides two simple ways of getting user input in a
GraphWin:
● mouse clicks
● textual input

we already saw

 12

4.7 Interactive Graphics

Textual Input

Graphics library has a simple Entry object, that draws a box on
the screen that can contain text.

Entry(centerPoint,width)

It has setText and getText methods.
setText(string) – sets the text of the object to string
getText() - returns the current string

number of characters of
text that can be displayed

 13

4.7 Interactive Graphics

Textual Input

Let's write a program that converts centimeters to inches:
The conversion is as follows: 1 in = 2.54 cm

 14

4.7 Interactive Graphics

Textual Input

Let's write a program that converts centimeters to inches:
The conversion is as follows: 1 in = 2.54 cm

Design/algorithm:
Draw the input box for centimeters
Draw the button “Convert”
Wait for the mouse click, then
Get the value from the box for centimeters
Convert it cm to in using inches = cm / 2.54
Display the result of conversion
Notify the user on how to terminate the program

see conversion.py

 15

Images

Our graphics library can display GIF and PPM images.

Example: let’s do a simple slide show of three pictures

see slideshow.py

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

