

Topics: Chapter 4. Objects and Graphics
4.1 Overview
4.2 The object of objects
4.3 Simple graphical programming
4.4 Using Graphical Objects

link to the graphics library:
http://mcsp.wartburg.edu/zelle/python/

CSI 31 Lecture 8

http://mcsp.wartburg.edu/zelle/python/

4.1 Overview
4.2 The Object of Objects

So far we used built-in Python data types for our programs (int,
float, long, str).

Each type:
● Can represent the certain set of data values, and
● Has a set of associated operations.

Data – Passive entities, they are manipulated and combined via
active operations.

4.1 Overview
4.2 The Object of Objects

Another (modern) approach:
programs are built using Object Oriented (OO) approach.

The basic idea:
we view a complex system as an interaction of simpler objects.

OO objects:
● Contain data (know staff). Also called “attributes”.
● Have operations (can do staff). Also called “methods”.

For example, a car is an object. It has some attributes (its brand, its
color, its model, its length,…) and can do things (can interact with a
human to be driven, can move, can crash, can break down,...)

A student is an object (in python, of course). What are some
attributes? What about methods?

4.1 Overview
4.2 The Object of Objects

Another (modern) approach:
programs are built using Object Oriented (OO) approach.

The basic idea:
we view a complex system as an interaction of simpler objects.

OO objects:
● Contain data (know staff). Also called “attributes”.
● Have operations (can do staff). Also called “methods”.

For example, a car is an object. It has some attributes (its brand, its
color, its model, its length,…) and can do things (can interact with a
human to be driven, can move, can crash, can break down,...)

A student is an object (in python, of course). What are some
attributes? What about methods?

 We will use graphics to show the object oriented approach.

4.3 Simple Graphics Programming

Instructions for getting the graphics library:

We will use the library written specifically for our book: graphics.py

You can download it from here:
http://mcsp.wartburg.edu/zelle/python/

Put/copy it into the folder 'Lib' in the Python's folder.

Note: maybe this library is already in your system. Check first by
writing “import graphics” into the prompt.

 The library is already available in the lab

http://mcsp.wartburg.edu/zelle/python/

Type in the following in the interactive window:
>>> import graphics
>>> win = graphics.GraphWin()

- This will create a new object with
the name 'win'

Tou can see that there is a new
window called 'Graphics Window'
(if you re-size it)

4.3 Simple Graphics Programming

Type in the following in the interactive window:
>>> import graphics
>>> win = graphics.GraphWin()

- This will create a new object with
 the name 'win'

You can see that there is a new
window called 'Graphics Window'
(if you re-size it)

Type in:
>>> win.close()
- The object 'win' is destroyed and we
 won't see that Graphics Window
 anymore.

4.3 Simple Graphics Programming

4.3 Simple Graphics Programming

We will be working with lots of commands (functions) from graphics
library, let's do an alternative import of that library:

>>> from graphics import *
- It means 'load all the operations/commands and constants from
the library module graphics'
- The imported commands become directly available, without the
dot-notation.

Now we can work more comfortably:
>>> win = GraphWin()

4.3 Simple Graphics Programming

GraphWin()

GraphWin(title="Graphics Window",width=200,
height=200, autoflush=True)

4.3 Simple Graphics Programming

GraphWin()

GraphWin(title="Graphics Window",width=200,
height=200, autoflush=True)

by default, the size of the window created is 200 pixels × 200 pixels
the title of the window is “Graphics Window” and
all the changes in it are automatically displayed

See example program example1.py

4.3 Simple Graphics Programming

Pixels

Pixels (picture elements)– are tiny points on our displays.
Each of them has color.

By controlling the color of each pixel we can control what is displayed
on the screen.

The position of each pixel is a pair (x,y) :
x-coordinate and y-coordinate.

4.3 Simple Graphics Programming

Origin (0,0)

Upper left corner : (0,0),
Lower right corner:
(max_vertical_resolution, max_horizontal_resolution)
Origin of our ''rectangular coordinate system'' is at the top-left corner.

See example program points.py

4.4 Using Graphical Objects

The module provides the following drawable objects: Point, Line,
Circle, Oval, Rectangle, Polygon, and Text.
Each of these kinds are examples of classes.

When we write an assignment p1=Point(10,30), the following
happens:
An instance of class Point is created (called object), and is
assigned to variable p1.

In over words, we never «use» classes themselves, we create
instances of classes (objects) and work with them.

4.4 Using Graphical Objects

Every object is an instance of some class, and the class
describes the properties the instance has.

4.4 Using Graphical Objects

To define a class we
1. Define a constructor(s)

(expression that creates instance of this class)
2. Define variable(s) (attributes)
3. Define method(s) (function(s))

4.4 Using Graphical Objects

1. defining a constructor(s)

constructor is an expression that creates brand new object.

The general form is: <class-name>(<param1>,<param2>,...)

name of class
(Circle or Point or ...)

parameters that are
required to initialize the
object

4.4 Using Graphical Objects

1. defining a constructor(s)

constructor is an expression that creates brand new object.

The general form is: <class-name>(<param1>,<param2>,...)

Example:
p = Point(50,100)
- the class name is Point, and here is a call to the constructor with
two parameters (x-coordinate, y-coordinate)

p: Point

x: 50
y: 100

4.4 Using Graphical Objects

1. defining a constructor(s)

constructor is an expression that creates brand new object.

The general form is: <class-name>(<param1>,<param2>,...)

Example:
c = Circle(Point(50,100),20)
- the class name is Circle, the constructor needs two parameters:

center (should be of type Point), and radius.

Point

x: 50
y: 100

c: Circle

center:
radius: 20

4.4 Using Graphical Objects

2. define variable(s)

In the Point class, x-coordinate value and y-coordinate value are
stored as instance variables inside of the object.

4.4 Using Graphical Objects

3. define method(s) (function(s))

To perform an operation on an object we use one of the methods of
the object:

Example:
p1=Point(30,30)
p1.draw(win)

«draw» is a function (method) of class Point, that draws a point.
It requires one parameter (where to draw the object, in this case in
the window “win”).

The general form of a method call:
<object>.<method-name>(<param1>,<param2>,...)

calls a method
«draw» of object p1

4.4 Using Graphical Objects

3. define method(s) (function(s))

Methods can be without parameters (when they are not needed):
p1.getX()

Methods like this, that allow us to access information from the
instance variables of the objects are called accessors.

4.4 Using Graphical Objects

3. define method(s) (function(s))

Methods can change the values of an object's instance variables,
hence changing the state of an object:
p1.move(10,30) – moves the point 10 pixels to the right and 30
pixels down.

Such methods are called mutators.

The general form of the move method is move(dx,dy).
All the graphical objects have this method.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

