
 1

CSI31 Lecture 7

Topics:
7.3 Multi-way Decisions
7.4 Exception Handling (part of the section)
7.5 Study in Design: Max of Three

 2

7. 3 Multi-way Decisions

One-way decisions if

if <condition>:
body

Two-way decisions if-else

if <condition>:
statements

else:
statements

 3

7. 3 Multi-way Decisions

One-way decisions if

if <condition>:
body

Two-way decisions if-else

if <condition>:
statements

else:
statementsMulti-way decisions if-elif-else:

if <condition1>:
<case 1 statements>

elif <condition2>:
<case 2 statements>

elif <condition3>:
<case 3 statements>

...
elif <conditionn>:

<case n statements>
else:

<default statements>

 4

7. 3 Multi-way Decisions

x=
−b±√ b2−4 ac

2a

Discriminant

if D = 0, there is only one solution
if D < 0, there are no real number
solutions
if D > 0, there are two solutions.

D=b2−4ac

Example: Solving quadratic equations
ax2+bx+c = 0

 5

7. 3 Multi-way Decisions

Example: Solving quadratic equations
ax2+bx+c = 0

flowchart: D=b*b-4*a*c

D==0 x = -b/(2*a)

D < 0 no real number solutions

x1 = (-b-sqrt(D))/(2*a)
x2 = (-b+sqrt(D))/(2*a)

yes

yes

no

no

 6

7. 3 Multi-way Decisions

With if:
...
if (discr == 0):

find one root

if (discr < 0):
no real roots

if (discr > 0):
find two roots

With if-else:
...
if (discr == 0):

find one root

else:
if (discr < 0):

no real roots

else:
find two roots

With if-elif-else:
...
if (discr == 0):

find one root

elif (discr < 0):
no real roots

else:
find two roots

see programs: quadratic-equation.py, quadratic-equation_mod.py

 7

7.4 Exception Handling

Let’s use the same example: solving a quadratic equation

we checked whether the radicand is less than zero before the call
to sqrt function.

Sometimes the programs become too crowded with decisions to
check for special cases that the main algorithm for handling the run-
of-the-mill cases seems completely lost.

Programming language designers have come up with mechanisms
for exception handling that helps to solve this design problem.

 8

7.4 Exception Handling

syntax:

try:
<body>

except <ErrorType>
<handler> what to do in case if something failed

in <body>

«Do these steps and if there is a problem, handle it this way»

 9

7.4 Exception Handling

Consider another program that solves quadratic equation:

def main():
 print("This program solves ...")

 try:
 import math
 a = float(input("Enter coefficient a:"))
 b = float(input("Enter coefficient b:"))
 c = float(input("Enter coefficient c:"))
 discrRoot = math.sqrt(b*b-4*a*c)
 root1=(-b+discrRoot)/(2*a)
 root2=(-b-discrRoot)/(2*a)
 print("The roots are:", root1,root2)
 except ValueError:
 print("No real roots")

main()

 10

7.4 Exception Handling

Please, note that ValueError is the name of the error that arises
when the program tries to extract a square root of a negative
number

type the following in the Python interactive window:
>>> import math
>>> math.sqrt(-10)
see what's the error name

see the more sophisticated program in quadratic-another2.py

 11

7.5 Study in Design: Max of Three

Let's write a program that finds the maximum of three numbers
(a,b,c).

There are more than one way of finding the maximum:

1. Compare each to all
2. Decision tree
3. Sequential processing
4. Use already written by somebody function

 12

7.5 Study in Design: Max of Three

1. Compare each to all
idea:
If a ≥ b and a ≥ c then a is maximum
If b ≥ a and b ≥ c then b is maximum
If c ≥ a and c ≥ b then c is maximum

...
 if a >= b and a >= c:
 max = a
 elif b >= a and b >= c:
 max = b
 else:
 max = c

 print("The maximum is", max)

 13

7.5 Study in Design: Max of Three

2. Decision tree

if a >= b:
 if a>= c:
 max = a
 else:
 max = c
else:
 if b >= c:
 max = b
 else:
 max = c

print("The maximum is", max)

a≥b

a≥cb≥c

yesno

yesyesno no

c is max c is maxb is max a is max

 14

7.5 Study in Design: Max of Three

3. Sequential Processing

max = a
if b > max

max = b
if c > max

max = c

print("The maximum is", max)

max < b yes

no

max = c

output max

max = a

max = b

max < c

no

yes

 15

7.5 Study in Design: Max of Three

4. Use already written by somebody function

Python's function:

max(a,b,c)

max() is a is a built-in method (does not need a special library) .

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

