

CSI31 Lecture 6

Topics:
3.5 Limitations of Computer Arithmetic
7.1 Simple Decisions
7.2 Two-way Decisions

3.5 Limitations of Computer Arithmetic

Recall our factorial function n! :
sometimes it is suggested that ! is there for a reason - meaning that
this function grows very rapidly.

For example, 50! = 304140932017133780436126081660647688
44377641568960512000000000000

3.5 Limitations of Computer Arithmetic

Recall our factorial function n! :
sometimes it is suggested that ! is there for a reason - meaning that
this function grows very rapidly.

For example, 50! = 304140932017133780436126081660647688
44377641568960512000000000000

recent versions of Python have no difficulty with this calculation.
Other versions of Python as well as other programming languages
(like C++, Java) would not fare as well.

For example, in Java, if we write a similar program,
13! = 1, 932, 053, 504, but if we check it:

13! is actually 6, 227, 020, 800

3.5 Limitations of Computer Arithmetic

It is important to keep in mind, that computer representations of
numbers (the actual data types) do not always behave exactly like
the numbers that they stand for.

Java program uses the underlying int data type, and relies on the
computer addition operation for ints.

There are infinitely many integers, but only a finite range of ints.

The number of bits a particular computer uses to represent an int
depends on the design of the CPU.

3.5 Limitations of Computer Arithmetic

bit 2 bit 1

0 0

0 1

1 0

1 1

with two bits

we can represent 4 things (22)

bit 3 bit 2 bit 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

with three
bits we can
represent 8
things:
23 = 8

The number of bits a particular computer uses to represent an int
depends on the design of the CPU.

Typical PCs today use 32 or 64 bits.

3.5 Limitations of Computer Arithmetic

The number of bits a particular computer uses to represent an int
depends on the design of the CPU.

Typical PCs today use 32 or 64 bits.
Therefore, for a 32 bit CPU, there are 232 possible values, which are
centered at 0, to represent the range of positive and negative
integers.

[-231,231-1]

232

2
=231

=2,147, 483,647

3.5 Limitations of Computer Arithmetic

The number of bits a particular computer uses to represent an int
depends on the design of the CPU.

Typical PCs today use 32 or 64 bits.
Therefore, for a 32 bit CPU, there are 232 possible values, which are
centered at 0, to represent the range of positive and negative
integers.

[-231,231-1]

12! £ 231 £ 13! hence Java program is fine for calculating factorials
up to 12, but after that the representation «overflows» and the
results are garbage.

232

2
=231

=2,147, 483,647

3.5 Limitations of Computer Arithmetic

Why does the modern Python program seems to work quite well
computing with large integers?

3.5 Limitations of Computer Arithmetic

Why does the modern Python program seems to work quite well
computing with large integers?

- Python's int is not a fixed size.
It expands to accomodate whatever value it holds.
The only limit is the amount of memory the computer has available
to it.

3.5 Limitations of Computer Arithmetic

Why does the modern Python program seems to work quite well
computing with large integers?

- Python's int is not a fixed size.
It expands to accomodate whatever value it holds.
The only limit is the amount of memory the computer has available
to it.

Of course, in order to perform operations on larger numbers,
Python has to break down operations into smaller units that the
computer hardware is able to handle.

3.5 Limitations of Computer Arithmetic

7.1 Simple Decisions (If-statement)

Syntax of the if-statement:

if <condition>:
body

Example:

if t>90:
print(''Heat Warning!'')

7.1 Simple Decisions (If-statement)

Syntax of the if-statement:

if <condition>:
body

Example:

if t>90:
print(''Heat Warning!'')

Control flow of simple if-statement:

<condition> true?

statement

statement

yes

no

...

7.1 Simple Decisions (If-statement)

Syntax of the if-statement:

if <condition>:
body

Example:

if t>90:
print(''Heat Warning!'')

Control flow of simple if-statement:

<condition> true?

statement

statement

yes

no

...

condition

body

7.1 Simple Decisions (If-statement)

Conditions:

Try to input the following commands in the interactive window
(Python's shell):

>>> 3*7 > 23

>>> 23 <= 4*6*0

>>> 5 == 5

>>> 5=5

Example: Online Wine Store
Let's write a simple program of an Online Wine Store.
Our store will offer 6 types of wine: Merlot, Sauvignon, Ice Wine,
Pinot Noir, Chardonnay, and Cabernet.

A customer will be able to choose only one type of wine, but any
number of bottles of the selected wine.

At the end of selection we will simply notify the user that the order is
forwarded to the checkout.

7.1 Simple Decisions (If-statement)

Example: Online Wine Store

Thoughts: what control structure can/should we use?
 loops or simple decisions?

Determining Specification:
Input: type of wine, number of bottles
Output: confirmation of the selection and forwarding to the checkout
check age restrictions

7.1 Simple Decisions (If-statement)

Example: Online Wine Store

Design/Algorithm:
get age of the customer,
check the age restrictions
get type of the wine from the user (the user will be given a list of
“number choices”)
get the number of bottles
display confirmation of the selection
forward to the checkout

see simpleDecision.py

7.1 Simple Decisions (If-statement)

Example: Online Wine Store

Possible modification: allow the customer to select up to 4
types of wine.

Yet another possible modification: we need to take care of:
- cases when the choice is out of the offered range of types of
wine, and
- we don't need to print anything when customer selects 7 (none
of the wines)

see simpleDecision_mod.py

see simpleDecision_mod2.py

7.1 Simple Decisions (If-statement)

7.2 Two-way Decisions (if-else statement)

Syntax of the if-else statement:

if <condition>:
<statements>

else:
<statements>

Control flow of a two-way decision
if-else statement:

<condition> true?

statement

statement

yesno

...

statement

statement
...

Example: Programming exercise 1
Many companies pay time-and-a-half for any hours worked
above 40 in a given week. Write a program to input the number
of hours worked and the hourly rate and calculate the total
wages for the week.

Software design:
input: the number of hours worked in a given week (h)
 hourly rate (rate)
output: total wage for the week (f(h,rate))
relation: calculate the wage using

7.2 Two-way Decisions (if-else statement)

f (h, rate)={h∗rate , if h≤4040∗rate+(h−40)∗rate∗1.5, if h>40}

Algorithm: flowchart

7.2 Two-way Decisions (if-else statement)

h > 40

wage = h * rate

yesno

wage = 40*rate+(h-40)*rate*1.5

display wage

get hours worked

get hourly rate

see wage.py

Testing/Debugging:
do a thorough testing

We can use a table of calculations that we performed ourselves:

7.2 Two-way Decisions (if-else statement)

hours hourly
rate

calculation wage

30 $12 30*$12 = $360 $360

41 $10 40*$10 + 1*$10*1.5 = $415 $415

29 $20 29*$20 = $580 $580

48 $18 40*$18 + 8*$18*1.5 = $936 $936

51 $11 40*$11 + 11*$11*1.5 = $621.50 $621.50

43 $12.60 40*$12.60 + 3*$12.60*1.5 = $560.70 $560.70

How does a condition looks exactly?

syntax: <expr> <relop> <expr>
<expr> - expression
<relop> - relational operator

7.1.2 Forming Simple Conditions

Python Mathmatics Meaning

< < less than

<= £ less than or equal to

== = equal to

>= greater than or equal to

> > greater than

!= not equal to

there are six relational operators in Python

Conditions are a type of expressions, called Boolean expression.

When a Boolean expression is evaluated, it produces a value of
either:
 true (the condition holds) or
 false (it doesn't hold).

In some languages, 1 and 0 (type int) are used to represent true
and false, correspondingly.

In Python, Boolean expressions are of type bool.

7.1.2 Forming Simple Conditions

Type in the following in Python's shell:

>>> 12 < 10
False
>>> 2*6 == 1*6
False
>>> 1 > 7 or (-3)**2>0
True
>>> 1 > 7 and (-3)**2>0
False
>>> not 1 > 7
True

7.1.2 Forming Simple Conditions

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

