CSI31 Lecture 4

Topics:

2.6 Definite Loops
2.7 Future Value Example

2.6 Definite Loops

recall chaotic function (from lecture 2):

- we use loops to execute a sequence of statements several times in succession.
iteration is one execution of that sequence of statements definite loop - is a simplest kind of loop. At the point in the program when the loop begins, Python knows how many times to iterate the body of the loop.

The example given above is the example of the definite loop, and is called counted loop.

2.6 Definite Loops

Example:

$$
\begin{aligned}
x=2 & \\
\text { for } & \\
& \text { in range(4): } \\
& \operatorname{print}(x)
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
& \begin{array}{l}
x=2 \\
\text { for } i n \text { range(4): }
\end{array} \\
& x=x+j * i \\
& \text { print(x) }
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
\rightarrow & x=2 \\
\text { for } & 2 \text { in range(4): } \\
& x=x+i * i \\
& \operatorname{print}(x)
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
\rightarrow \begin{aligned}
x= & 2 \quad[0,1,2,3] \\
\rightarrow & \text { for } \quad \underset{i n \operatorname{range}(4):}{ } \\
& x=x+i * i \\
& \operatorname{print}(x)
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
1^{\text {st }} \text { iteration }
$$

$$
x \quad 2
$$

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for } i \text { in range(4): } \\
& \rightarrow x=x+i * j \\
& \text { print(x) }
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
1^{\text {st }} \text { iteration }
$$

$1^{\text {st }}$ iteration

$$
\begin{array}{ll}
x & 2 \\
4 & \\
i & 0
\end{array}
$$

$$
x=2+0 * 0=2
$$

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for } i \text { in range(4): } \\
& \rightarrow x=x+i * j \\
& \text { print(x) }
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
\begin{gathered}
x=2 \quad[0,1,2,3] \\
\text { for } \quad \text { in range }(4): \\
x=x+i * j \\
\rightarrow \operatorname{print}(x)
\end{gathered}
$$

$1^{\text {st }}$ iteration

$$
x=2+0 * 0=2
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
& x= \quad[0,1,2,3] \\
& \text { for } \\
& i \operatorname{in~range(4):~} \\
& x=x+i_{i} \\
& \operatorname{print}(x)
\end{aligned}
$$

$$
2^{\text {nd }} \text { iteration }
$$

$$
x \quad 2
$$

i

$$
1
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for } i \text { in range(4): } \\
& \rightarrow x=x+i * j \\
& \text { print(x) }
\end{aligned}
$$

$x=2+1 * 1=3$

2.6 Definite Loops

Example:

$$
\begin{gathered}
x=2 \quad[0,1,2,3] \\
\text { for } \quad \text { in range }(4): \\
x=x+1 * j \\
\rightarrow \operatorname{print}(x)
\end{gathered}
$$

$2^{\text {nd }}$ iteration

$x=2+1 * 1=3$

2.6 Definite Loops

Example:

$$
3^{\text {rd }} \text { iteration }
$$

$\times \quad 3$
$x=2 \quad[0,1,2,3]$
\rightarrow for i in range(4):
$x=x+i * j$
print(x)

2.6 Definite Loops

Example:

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for in range (4) : } \\
& \rightarrow x=x+i * j
\end{aligned}
$$

$$
3^{\text {rd }} \text { iteration }
$$

$$
x=3+2 * 2=7
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for } i \text { in range(4): } \\
& x=x+i * i \\
& \rightarrow \text { print }(x)
\end{aligned}
$$

$$
3^{\text {rd }} \text { iteration }
$$

$3^{\text {rd }}$ iteration

$$
7
$$

$$
x=3+2 * 2=7
$$

2.6 Definite Loops

Example:

$$
4^{\text {th }} \text { iteration }
$$

$$
\begin{aligned}
& x= 2 \quad[0,1,2,3] \\
& \text { for } \quad \text { in range } \\
& x=x+i * i \\
& \operatorname{print}^{2}(x)
\end{aligned}
$$

$$
x \quad 7
$$

$$
i \quad 3
$$

2.6 Definite Loops

Example:

$$
4^{\text {th }} \text { iteration }
$$

$$
7
$$

$$
x=7+3 * 3=16
$$

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for } i \text { in range(4): } \\
& \rightarrow x=x+i * j \\
& \text { print(x) }
\end{aligned}
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
& x=2 \quad[0,1,2,3] \\
& \text { for } \begin{array}{l}
\text { in range } \\
x=x+i * i
\end{array} \\
& \rightarrow \operatorname{print}(x)
\end{aligned}
$$

$$
x=7+3 * 3=16
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
x= & {[0,1,2,3] } \\
\text { for } & \quad \text { in range } \\
& x=x+i * i \\
& \operatorname{print}(x)
\end{aligned}
$$

$$
4^{\text {th }} \text { iteration }
$$

$$
\begin{aligned}
& x \quad 16
\end{aligned}
$$

$$
\text { i } 3
$$

2.6 Definite Loops

Example:

$$
\begin{aligned}
x=2 & {[0,1,2,3] } \\
\text { for } & 2 \text { in range }(4): \\
& x=x+i * j \\
& \operatorname{print}(x)
\end{aligned}
$$

$4^{\text {th }}$ iteration

2.6 Definite Loops

A Python for loop has this general form:
for <var> in <sequence>: <body>

- <body> is a sequence of Python statements.
- <var> is the loop index. It takes on each successive value in the sequence, and the statements in the body are exectuted once for each value.)
- <sequence> portion often consists of a list of values.

Example:
the length of the list determines the
$y=1$
for counter in $[1,2,3,4]$:
$y=y+$ counter
print(''counter = '', counter, '' $y=$ '', y)

2.6 Definite Loops

example:

$y=1$
for counter in [1, 2, 3, 4]:
$y=y+$ counter
print(''counter = '', counter, '', y = '', y)
counter $=1, \mathrm{y}=2$
counter $=2, \mathrm{y}=4$
counter $=3, \mathrm{y}=7$
counter $=4, y=11$

2.6 Definite Loops

Compare two counted loops:
for i in range(10):

$$
\begin{aligned}
& x=3.9 * x *(1-x) \\
& \text { print }(x)
\end{aligned}
$$

for counter in [1, 2, 3, 4]:
$y=y+$ counter
print(''counter = '', counter, '', y = '', y)

2.6 Definite Loops

Compare two counted loops:

```
for i in range(10):
    x = 3.9 * x * (1-x)
    print(x)
```

for counter in [1,2,3,4]:

```
    y = y + counter
```

 print(''counter = '', counter, '' y = '', y)
 range (10) is a sequence of 10 numbers (from 0 till 9)
Try to input in the interactive window:
>>> range(10)
range $(0,10)$ - you will get a sequence of values from 0 to 9

2.6 Definite Loops

The range function is a built-in Python function (command)
General form of the range function:
range (<expr>)

- will produce a sequence of numbers starting from 0 and going up to, but not including, the value of <expr>

If you begin to type in range(in the interactive window - you'll see a hint:
range([start,] stop[, step]) -> list of integers
Try to input the following statements in the Python shell:
>>> list(range $(4,13)$)
>>> list(range(4, 16, 2)) and see the result.

2.6 Definite Loops

Statements like for loops are called control structures because they control the execution of other parts of the program.

Some programmers find it useful to think of control structures in terms of pictures called flowcharts.

2.6 Definite Loops

Statements like for loops are called control structures because they control the execution of other parts of the program.

Some programmers find it useful to think of control structures in terms of pictures called flowcharts.

$$
\begin{aligned}
& y=1 \\
& \text { for counter in }[1,2,3,4]: \\
& y=y+\text { counter } \\
& \text { print }(y)
\end{aligned}
$$

2.6 Definite Loops

Statements like for loops are called control structures because they control the execution of other parts of the program.

Some programmers find it useful to think of control structures in terms of pictures called flowcharts.

2.7 Example program: future value

Let's develop a program to determine the future value of an investment.

Money is deposited in a bank account (the initial principal).
It earns interest (APY - annual percentage yield).
This is the percent of the principal that will be added to the principal in one year.
Example: For $\$ 100$ and 3% APY, in a year we will get $\$ 103=\$ 100$ $+3 \%$ of $\$ 100=\$ 100+\$ 3$.

2.7 Example program: future value

Let's develop a program to determine the future value of an investment.

Money are deposited in a bank account (the principal).
It earns interest (APY - annual percentage yield).
This is the percent of the principal that will be added to the principal in one year.
Example: For $\$ 100$ and 3% APY, in a year we will get $\$ 103=\$ 100$ $+3 \%$ of $\$ 100=\$ 100+\$ 3$.
In another year we will get $\$ 103+3 \%$ of $\$ 103=\$ 103+\$ 3.09=$ \$106.09.

2.7 Example program: future value

Let's develop a program to determine the future value of an investment.

Money are deposited in a bank account (the principal).
It earns interest (APY - annual percentage yield).
This is the percent of the principal that will be added to the principal in one year.
Example: For $\$ 100$ and 3% APY, in a year we will get $\$ 103=\$ 100$ $+3 \%$ of $\$ 100=\$ 100+\$ 3$.
In another year we will get $\$ 103+3 \%$ of $\$ 103=\$ 103+\$ 3.09=$ $\$ 106.09$.
In another year we will get $\$ 106.09+3 \%$ of $\$ 106.09=\$ 103+$ \$3.1827 = \$109.2727.

2.7 Example program: future value

Let's develop a program to determine the future value of an investment.

Money are deposited in a bank account (the principal).
It earns interest (APY - annual percentage yield).
This is the percent of the principal that will be added to the principal in one year.
Example: For $\$ 100$ and 3% APY, in a year we will get $\$ 103=\$ 100$ $+3 \%$ of $\$ 100=\$ 100+\$ 3$.
In another year we will get $\$ 103+3 \%$ of $\$ 103=\$ 103+\$ 3.09=$ $\$ 106.09$.
In another year we will get $\$ 106.09+3 \%$ of $\$ 106.09=\$ 103+$ \$3.1827 = \$109.2727.
Etc.

2.7 Example program: future value

Summary: Given the principal and the interest rate (APY), we should be able to calculate the value of the investment any number of years into the future!

2.7 Example program: future value

Summary: Given the principal, the interest rate and the number of compounding periods, we should be able to calculate the value of the investment ten years into the future!

Program name: Future Value

Inputs:

- the amount of money being invested (in dollars)
- the interest rate (APR - annual percentage rate) (in \%)
- The number of compounding periods

Output: The value of investment in 10 years.

2.7 Example program: future value

Summary: Given the principal and the interest rate (APY), we should be able to calculate the value of the investment any number of years into the future!

Program name: Future Value

Inputs:

- The initial amount of money being invested (in dollars)
- The interest rate (APY - annual percentage yield) (in \%)
- The number of years

Output: The value of investment after the inputted years.
Relationship: value after one year equals:
New principal = old principal + old principal*interest rate
This formula needs to be applied the number of years inputted.

