## MTH 42 LECTURE NOTES (Ojakian)

## Topic 12: Basis and Dimension

## OUTLINE

(References: 4.2)

1. What a basis is.
2. Key properties.
3. Two ways to find a basis.
4. Dimension
5. Definition of Basis
(a) See Definition 4.8
(b) Key Fact: Theorem 4.9.
(c)

PROBLEM 1. Do section 4.2: 1, 2, 3.
If it is a basis, verify Theorem 4.9.
PROBLEM 2. Find two different examples of a basis for $R^{3}$. Verify Theorem 4.9 for at least one of these.
Also find examples of sets of vectors in $R^{3}$ which are not a basis.
PROBLEM 3. Consider the subspace $S$ of $R^{3}$ which consists of the $x-y$ plane. Find two different examples of a basis for $S$.
2. Dimension
(a) Theorem 4.12 and Definition 4.13 and not dimension of $\{\overrightarrow{0}\}$

PROBLEM 4. Find the dimension of $R^{3}$. Find the dimension of $R^{n}$ for any $n$.
(b) Note the significance!

Theorem 4.9 together with Theorem 4.12

## 3. Finding a Basis: The row approach

Given a set of vectors, find a basis of their span, not necessarily using any of those vectors.
(a) Make the vectors into the rows of a matrix.
(b) Put the matrix into echelon form.
(c) The non-zero rows are a basis.
(d)

PROBLEM 5. Let $S$ be the span of $(1,2,0,1),(3,7,1,0)$, and $(7,11,1,2)$. Find $a$ basis of $S$.
(e) Why does this work?
i. Row operations do not change the span of the rows.
ii. Rows of Echelon Form matrix are linearly independent.
4. Finding a Basis: The column approach

Given a set of vectors, find a basis of their span, among those vectors.
(a) Make the vectors the columns of a matrix.
(b) Put the matrix into echelon form.
(c) The columns of the original matrix corresponding to the pivot columns are a basis.
(d)

PROBLEM 6. Do problem 5 again, but this time find a basis contained in the original vectors.
(e) Why does this work?
i. Row operations do not change the dependencies among the columns.
ii. For a matrix in Echelon form, the set of pivot columns are linearly independent.
iii. For a matrix in Echelon form, any non pivot column is a linear combination of the pivot columns.

