MTH 42 LECTURE NOTES (Ojakian)

Topic 11: Subspaces

OUTLINE

(References: 4.1)

1. Subspaces
2. Null Space $=$ Kernal
3. Range Space

1. Subspace Definition

(a) Closed under vector addition.
(b) Closed under scalar multiplication
(c) Definition of subspace: Non-empty, closed under vector addition and scalar multiplication (slight modification of Definition 4.1 which is equivalent).
(d) Subspace or not subspace? (First, just in R^{2} !)
i. Directly describing set of points

PROBLEM 1. Consider the line segment in R^{2} connecting the two points $(-1,-2)$ and $(1,2)$. Is this set of points a subspace or not?
ii. Describing points as the set of solutions to an equation

PROBLEM 2. Consider the line in R^{2} given by the equation $y=2 x+1$. Is this set of points a subspace or not?
PROBLEM 3. Consider the line in R^{2} given by the equation $y=2 x$. Is this set of points a subspace or not?
iii. A generic description of a set of points

PROBLEM 4. Consider any 2 dimensional ball of finite radious in R^{2}. Is this set of points a subspace or not?
iv. Describe them all?

PROBLEM 5. Describe all the subspaces of R^{2}.
2. Subspace Facts
(a) Points to check
i. Useful for checking if a set is NOT a subspace. Theorem 1. A subspace always contains the zero vector.
ii. Useful for checking if a set is IS a subspace: Theorem 4.2
iii. Consider checklist on page 153.
(b) More Examples
i. Describing a set of vectors with mathematical notation

PROBLEM 6. Do exercise 1 on page 158.
PROBLEM 7. Let $X=\{(2 s, 5 s,-s) \mid$ for all s in $R\}$. Is X a subspace of R^{3}.
PROBLEM 8. Describe geometrically the subspaces in the last two problems. Describe all the subspaces of R^{3}.
ii. Describing a set of vectors as the solution to a system of equations

PROBLEM 9. Pick some non-homogeneous system of equations. Is its set of solutions a subspace?
PROBLEM 10. Pick some homogeneous system of equations. Is its set of solutions a subspace?
iii. Define Null Space: See definition 4.4 on page 155.
3. Important subspaces: Null Space, Kernal Space, and Range Space
(a)

PROBLEM 11. Consider exercise 27 on page 159. Do the following:
i. Write down the linear transformation T that is defined from the matrix A.
ii. Find the Null Space for A.
iii. Describe the set of vectors \bar{x} such that $T(\bar{x})=\overline{0}$.
iv. Describe the Range of T. Is it a subspace?
(b) Define: Kernal Space and Range Space

PROBLEM 12. Do exercise 34 on page 159 (use Anaconda).
PROBLEM 13. Explain/prove that the Range Space is a subspace.
Note: Theorem 4.5 on page 156. Notice which R^{x} each is a subspace of!
PROBLEM 14. Make up a linear transformation. Determine which R^{x} each is a subspace of: Kernal Space, Null Space, Range Space
(c) One-to-One Theorem

Note: Theorem 4.6 on page 157
PROBLEM 15. Consider exercise 27 on page 159 again. Is the linear transformation defined from this matrix injective? Do this in two ways: using linear independence and Theorem 4.6

