MTH 42 LECTURE NOTES (Ojakian)

Topic 8: Matrix Algebra

OUTLINE

(References: 3.2)

1. Matrix operations
2. Properties of Matrix Multiplication
3. Matrix Addition and Scalar Multiplication

Do example and see calculations in Anaconda.
Note Theorem 3.11.
2. Matrix Multiplication
(a) It is not what you might think!

PROBLEM 1. Evaluate $A \cdot B$, where A is $a 2$ by 2 matrix and B is a 2 by 3 matrix. Use both definitions below.
(b) Definition 1 (Definition 3.12) - the "vector arithmetic approach".

In $A \cdot B$, each column of B gives a linear combination of the A columns (generalizes: Matrix times Vector)
(c) Definition 2 (Figure 2 on page 99) - the "dot product approach"
i. Define the dot product of two vectors.
ii. Do Row i of A DOT Column j of B to get entry (i, j) in the product.
3. Matrix Properties
(a) What IS true: Theorem 3.13.

PROBLEM 2. Pick a property and verify (not proof!) it for an example.
(b) What is NOT true! Do and discuss Theorem 3.14

PROBLEM 3. Find examples to make each true - first because of matrix dimension problems, and then because of the matrix content.
(c) Transpose of a Matrix.

PROBLEM 4. Consider any matrix and find its transpose.

4. Why Matrix Multiplication Defined As It Is?

One good reason: Function composition!
PROBLEM 5. Make up a linear transformation $T_{1}: R^{3} \rightarrow R^{2}$ and a linear transformation $T_{2}: R^{2} \rightarrow R^{4}$. Then do the following:
(a) Calculate $T_{2} \circ T_{1}$ on some inputs.
(b) Find the matrix representing T_{1} and T_{2}.
(c) Find the matrix representing $T_{2} \circ T_{1}$. And check your inputs from the first part with this matrix.
5. Matrix Powers and Networks

Theorem 1. Let A be the adjacency matrix of a graph. Then for integers $k \geq 1$, entry (i, j) of A^{k} is the number of walks between vertex i and vertex j.

PROBLEM 6. Consider a graph which is a path of length 3. Find its adjacency matrix and see how its matrix powers fit with the above theorem. Experiment in Anaconda to see higher matrix powers.

