MTH 42 LECTURE NOTES (Ojakian)

Topic 7: Linear Transformations and Matrices

OUTLINE

(References: 3.1)

1. Linear Transformations

- 2. Connection between linear transformations and matrices
- 1. <u>Functions</u>
 - (a) Definition of a function. Example: $f(x, y) = x^2 + y^2 + 1$
 - (b) Domain, codomain, and range.
 PROBLEM 1. For the above function, choose a reasonable domain and codomain. Then find the range.

2. <u>Linear Transformations</u>

(a) See Definition 3.1

PROBLEM 2. Consider the function in Example 2. Evaluate it for some example inputs.

PROBLEM 3. Do Example 2. Then modify it to make it linear (and show it is linear).

Note: Intuition - make each output entry a linear expression.

(b) Equivalent definition (section 3.1, exercise 58).

PROBLEM 4. Consider the theorem of section 3.1 - exercise 58.

i. We will make up a linear function and then use this fact to prove it is linear.ii. Prove one direction of the fact - Just 58a.

PROBLEM 5. Observe that T(0) = 0 for the above linear examples, then do exercise 3.1: 55.

3. <u>Relation to Matrix</u>

- (a) Useful facts to note: Theorem 2.16 (page 73).
- (b) Defining a function using a matrix
 PROBLEM 6. From Section 3.1 (page 92): Do exercise 3. Then prove that this function is linear.
- (c) Equivalent definition (Theorem 3.8): T is defined by from a matrix if and only if T is a linear transformation.
 - i. Example of forward direction : see last problem.
 - ii. Example of backwards direction.

PROBLEM 7. See Example 7 (page 89). Find its corresponding matrix in a way that mimicks the proof of Theorem 3.8, giving a "proof by example" of the theorem.

4. Recall: Injective and Surjective Functions

(a) One-to-one (or injective)

PROBLEM 8. Consider the two functions $f(x) = x^2 - 3$ and $g(x) = x^3 + 1$. One is injective and one is not. Determine which is which, and justify!

(b) Onto (or surjective)

PROBLEM 9. For the last two functions are they onto or not?

(c) One-to-one correspondance (or bijective)

PROBLEM 10. Which of the above functions are bijective?

PROBLEM 11.

i. Find a function with domain and codomain R which is onto, but not injective.ii. Find a function with domain and codomain R which is injective, but not onto.

5. Injective and Surjective Linear Transformations

(a)

Theorem 1. ("One-to-one theorem" - Theorem 3.6) Suppose A is the matrix defining a linear transformation.

The linear transformation is one-to-one \iff The columns of A are linearly independent

Theorem 2. ("Onto theorem" - Theorem 3.7) Suppose A is the matrix defining a linear transformation.

The linear transformation is onto \iff The columns of A span the codomain.

PROBLEM 12. Do section 3.1 (page 92): Exercises 23, 25

- (b) Briefly, why on above theorems:
 - i. One-to-One: If vectors are linearly independent, then two linear combinations yielding the same vector would create the contradiction of a linear dependence.
 - ii. Onto: If vectors span, then you get all possibilities.
- (c) NOTE: The Big Theorem (Theorem 3.9) on page 89.

6. Geometric Aspects

Theorem 3. Suppose L is the line segment in \mathbb{R}^2 connecting the points u and v. Suppose T is a linear transformation. Then T(L) is the line segment with endpoints T(u) and T(v).

PROBLEM 13.

Consider the linear transformation corresponding to the following matrix: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

What does it do to the line segment connection (0,0) to (3,1)? What does it do in general?

PROBLEM 14. Find a matrix which we can use to get reflection across the y-axis.

PROBLEM 15. Find a matrix which we can use to triple the length of a line segment.

PROBLEM 16. See Section 3.1 (page 91)

- (a) Find a matrix which we can use to rotate a line segment 90 degrees counter clockwise.
- (b) Find a matrix which we can use to rotate a line segment 90 degrees clockwise.

PROBLEM 17. Prove the above theorem.

7. <u>Final Problems</u>

PROBLEM 18. From Section 3.1 (page 94): Exercises 61, 66, 69, 75