MTH 42 LECTURE NOTES (Ojakian)

Topic 6: Span and Linear Independence

OUTLINE

(References: 2.2, 2.3)

1. Span
2. Linear Independence
3. Definition of Span
(a) Examples in R^{2} and R^{3}.

PROBLEM 1. Find some vectors in the span of some other vectors, by hand and using Anaconda.
(b) Definition 2.5
(c)

PROBLEM 2. In R^{3} is $(1,0,0)$ in the span of $\{(2,1,1),(1,2,3)\}$?
Note: Convert Vector Equation to System of Equations.
PROBLEM 3. Is the vector $(6,4)$ in span $\{(0,1),(2,1)\}$?
PROBLEM 4. Show that all the vectors of R^{2} are in $\operatorname{span}\{(0,1),(2,1)\}$.
2. How many vectors needed to span R^{n} ?
(a) We have seen that n vectors can span R^{n}. Do n vectors always span R^{n} ?
(b) For every n, are there some n vectors that span R^{n} ?
(c) Can less than n vectors span R^{n} ?

PROBLEM 5. From Section 2.2, page 66 - Do exercise 37.
Then see how this is a "proof by example!?" of Theorem 2.8 on p. 63
PROBLEM 6. From section 2.2 (page 67): Exercise 65.
3. Matrix Equation and Converting between forms
(a) Matrix Form: See Definition 2.9

PROBLEM 7. From Section 2.2 (page 64): Do Example 7.
(b) System of Equations TO Matrix Form

PROBLEM 8. From Section 2.2 (page 65) do: 13

4. Redundancy and Linear Independence

(a) Do Theorem 2.7 by example in R^{2}.
(b) Two equivalent ways to talk about one idea:
i. "Linear Independence" or
ii. "Linear Dependence"

Definition 1. (Defined in termed of linear dependence - Theorem 2.14)
A set of vectors in R^{n} is linearly dependent if any one vector is in the span of the others.
A set of vectors is linearly independent if they are not linearly dependent.
Definition 2. (Defined in terms of linear independence - Definition 2.11)
A set of vectors $\left\{u_{1}, \ldots, u_{m}\right\}$ in R^{n} is linearly independent if the only solution to the equation

$$
x_{1} u_{1}+\cdots+x_{m} u_{m}=0
$$

is $x_{1}=\cdots=x_{m}=0$.
A set of vectors is linearly dependent if they are not linearly independent.
(c) Checking if a set of vectors is linearly independent

Note: You do NOT need to solve the system. Just determine if it has a non-trivial solution or not!

PROBLEM 9. Do section 2.3 (page 77): Exercises 3 and 10.
(By hand and with Anaconda)
(d) Find 3 vectors in R^{2} that are linearly independent?
(e) Discuss Theorem 2.13.

PROBLEM 10. From Section 2.3 (page 79): Do exercise 53.
5. Homogenous system and non-Homogenous system

Example 5.
Theorem 2.17
PROBLEM 11. Suppose the system $A x=0$ has the general solution:

$$
(3 s-2 t, s, 4 t, t) .
$$

And suppose that $A x=b$ has $(1,0,-2,7)$ as one of its solutions. Express the general solution to the system $A x=b$.
6. The Big Theorem

Discuss Theorem 2.19
7. Some Proofs

PROBLEM 12. Section 2.2 (page 67): Exercises 67, 71
PROBLEM 13. Section 2.3 (page 79): Exercises 61
PROBLEM 14. Section 2.3 (page 79): Exercises 58 and 59

