MTH 42 LECTURE NOTES (Ojakian)

Topic 1: Systems of Linear Equations

OUTLINE

(References: 1.1)

1. Linear Equations
2. Systems of Equations
3. Lines and Planes
4. Linear Expression

Examples, using variables x_{1}, x_{2}, \ldots
2. Linear Equation
(a) What it is.
i. Examples with 2 variables: Lines on the plane.
ii. Examples with 3 variables: Planes in R^{3}.
iii. Examples with more variables.

Definition: In general, a linear equation in n variables gives a Hyperplane in n-dimensional space.
(b) Aside: What is R^{n} ?
(c) Solution Set

PROBLEM 1.

- Find 2 different solutions to the equation and graph it: $3 x+4 y=1$.
- Find the General Solution, using a Free Parameter.

PROBLEM 2.

- Find 3 different solutions to the equation and graph it: $x+y+z=1$.
- Find the General Solution.

3. Systems of Linear Equations
(a) What it is.
i. Examples with 2 variables (see below).
ii. Examples with 3 variables (see below).
iii. Examples with more variables.
(b) Solution Set
i. Terminology: Consistent, Inconsistent
ii. Examples with 2 variables: Intersection of lines.

PROBLEM 3. Solve the system by graphing: $\left\{\begin{array}{r}x_{1}+x_{2}=0 \\ 3 x_{1}+x_{2}=0\end{array}\right.$

PROBLEM 4. Solve the system by graphing (use computer): $\left\{\begin{array}{r}2 x_{1}+x_{2}=2 \\ 6 x_{1}+3 x_{2}=2\end{array}\right.$
iii. Examples with 3 variables: Intersection of planes.

PROBLEM 5. Solve the system by .. thinking: $\left\{\begin{array}{r}x_{1}+x_{2}+2 x_{3}=0 \\ 2 x_{1}+2 x_{2}+4 x_{3}=0\end{array}\right.$
PROBLEM 6. Solve the system by graphing using computer (and thinking):

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=0 \\
2 x_{1}+2 x_{2}+4 x_{3}=9
\end{array}\right.
$$

iv.

PROBLEM 7. Conceptually, what can a solution set look like for the following scenarios.
A. A system of equations with 3 variables and 2 equations.
B. A system of equations with 3 variables and 3 equations.
C. A system of equations with 3 variables and 100 equations.
D. See the textbook picture on pages 6 and 7 .
v. Examples with more variables. Not to solve yet!

4. A First Theorem

PROBLEM 8. Consider some system of linear equations. Based on the examples, what sizes are possible for the solution sets?
(Answer in Theorem 1.2; don't peak!)

