MTH 32 LECTURE NOTES (Ojakian) Topic 14: Polar Calculus

OUTLINE (References: 7.4)

1. Area

2. Arclenth

1. Area in polar coordinates

Formula: Area = $\int_{a}^{b} (1/2) [f(\theta)]^2 d\theta$

PROBLEM 1. Consider the polar curve $r = 2\cos\theta$. What should its area be? Find the area with a polar integral.

PROBLEM 2. Suppose d is some positive constant. Consider the polar curve $r = d \sin \theta$. What does d represent? What should its area be? Find the area with a polar integral.

***PROBLEM* 3.** Consider the polar curve r = 2. What should its area be? Find the area with a polar integral.

PROBLEM 4. Consider the polar curve $r = 3 \sin 2\theta$. It is a shape with 4 petals. Find the area of one petal with a polar integral.

PROBLEM 5. From the WORK BOOK, section 26: Do 5b and 5c.

2. Arclength in polar coordinates

Formula: Arclength = $\int_{a}^{b} \sqrt{(f(\theta))^{2} + (f'(\theta))^{2}} d\theta$

PROBLEM 6. Consider the polar curve $r = 2\cos\theta$. What should its arclength be? Find the area with a polar integral.

***PROBLEM* 7.** Suppose d is some positive constant. Consider the polar curve $r = d \sin \theta$. What does d represent? What should its arclength be? Find the arclength with a polar integral.

***PROBLEM* 8.** Consider the polar curve r = 2. What should its arclength be? Find the arclength with a polar integral.

PROBLEM 9. Consider the polar curve $r = 2 + 2\cos\theta$. Find the arclength.

PROBLEM 10. From the WORK BOOK, section 26: Do 9.