MTH 32 LECTURE NOTES (Ojakian)

Topic 12.5: Trig Review

OUTLINE

1. Radians versus Degrees
2. Definitions of Trig Functions: Triangle and Circle
3. Solving for angles

1. Radian measure

(a) Angles can be measured in degrees or radians. Just different units (like Kilograms versus Grams)
i. Remember: 180 degress $=\pi$ radians
ii. Degree to Radian: Mult by $\pi / 180$
iii. Radian to Degree: Mult by $180 / \pi$
(b)

PROBLEM 1.

i. Convert 90° to radians.
ii. Convert $\pi / 3$ radians to degrees.
2. Definitions of Trigonometric Functions
(a) sin, cos, tan, csc, sec, and cot
(b)

PROBLEM 2. Consider the right triangle whose 2 legs have length 3 and 4. Find all 6 trig functions of the angle that includes the side of length 4.
PROBLEM 3. Consider the right triangle with a hypotenuse of length 10 and one leg of length 5 Find all 6 trig functions of the angle that includes the side of length 5.
3. Special Angles

Evaluate trig functions for angles: $\pi / 6, \pi / 4, \pi / 3$ (i.e $30,45,60$).
(a) For 45 degree angle, draw a square and cut it in half diagonally.
(b) For 30 and 60, draw an equilateral triangle and but it in half.

4. Representing angles with any measure

(a) Standard position:
i. One side (the initial side) points in the positive x-direction.
ii. The other side (the terminal side) rotates from the initial side.
iii. Positive angle: counter-clockwise rotation.
iv. Negative angle: clockwise rotation.
(b)

PROBLEM 4. Draw the following angles in standard position:

$$
45^{\circ}, \quad-\pi / 4, \quad 3 \pi / 2, \quad 210^{\circ}
$$

PROBLEM 5. Draw the following angles in standard position:

$$
\pi, \quad 135^{\circ}, \quad 120^{\circ}
$$

(c)

Definition 1. Angles with the same terminal side are called co-terminal.
PROBLEM 6. Find some angles co-terminal with the ones above.
5. Evaluating trig function from a point on terminal side
$\sin (\theta)=y / r$
$\cos (\theta)=x / r$
$\tan (\theta)=y / x$
csc, sec,and cot are defined as the reciprocals.
PROBLEM 7. Evaluate $\tan (\theta)$ and $\sin (\theta)$ where $(-3,-4)$ is a point on the terminal side of θ.
PROBLEM 8. Evaluate $\tan (\theta)$ and $\cos (\theta)$ where $(-1,4)$ is a point on the terminal side of θ.

PROBLEM 9. Evaluate $\sin \left(90^{\circ}\right)$
PROBLEM 10. Evaluate the following:
(a) $\cos \left(-180^{\circ}\right)$
(b) $\tan (-\pi / 2)$

PROBLEM 11. Evaluate the following (use a special triangle if needed):
$\tan \left(225^{\circ}\right)$ and $\sin \left(225^{\circ}\right)$
PROBLEM 12. Evaluate the following (use a special triangle if needed):
$\cos \left(-210^{\circ}\right)$ and $\sec \left(-210^{\circ}\right)$
6. Evaluating trig function using a reference angle

An alternative approach to evaluating trig functions of angles whose terminal side is not on the x or y axis.
(a) Draw the angle in standard position.
(b) Find the Reference Angle (the angle between the terminal side and the x -axis).
(c) Evaluate the trig function at the Reference Angle.
(d) Leave the answer as is, or modify by making negative, based on:

The quadrant of the terminal side and the trig function being evaluated.
(e)

PROBLEM 13. Evaluate the following: $\cos (3 \pi / 4), \sin (3 \pi / 4)$, and $\tan (3 \pi / 4)$
PROBLEM 14. Evaluate the following: $\sin (7 \pi / 6)$ and $\csc (7 \pi / 6)$
7. Solving for the angle

To find SOME angle that works:
(a) Find a reference angle which gives the positive value
(b) Pick an angle that has that reference angle, and the correct sign.
(c) Problems

PROBLEM 15.

i. Suppose $\tan \theta=-1$. Find some solution θ.
ii. Suppose $\cos \theta=-1 / 2$. Find some solution θ.

PROBLEM 16.

i. Suppose $\tan \theta=-\sqrt{3}$. Find some solution θ.
ii. Suppose $\sin \theta=-1 / 2$. Find some solution θ.

