MTH 32 LECTURE NOTES (Ojakian) Topic 12.5: Trig Review

OUTLINE

1. Radians versus Degrees

- 2. Definitions of Trig Functions: Triangle and Circle
- 3. Solving for angles

1. <u>Radian measure</u>

- (a) Angles can be measured in degrees or radians. Just different units (like Kilograms versus Grams)
 - i. Remember: 180 degress = π radians
 - ii. Degree to Radian: Mult by $\pi/180$
 - iii. Radian to Degree: Mult by $180/\pi$
- (b)

PROBLEM 1.

- *i.* Convert 90° to radians.
- ii. Convert $\pi/3$ radians to degrees.

2. Definitions of Trigonometric Functions

- (a) sin, cos, tan, csc, sec, and cot
- (b)

PROBLEM 2. Consider the right triangle whose 2 legs have length 3 and 4. Find all 6 trig functions of the angle that includes the side of length 4.

***PROBLEM* 3.** Consider the right triangle with a hypotenuse of length 10 and one leg of length 5 Find all 6 trig functions of the angle that includes the side of length 5.

3. Special Angles

Evaluate trig functions for angles: $\pi/6, \pi/4, \pi/3$ (i.e 30, 45, 60).

- (a) For 45 degree angle, draw a square and cut it in half diagonally.
- (b) For 30 and 60, draw an equilateral triangle and but it in half.

4. Representing angles with any measure

(a) Standard position:

- i. One side (the **initial side**) points in the positive x-direction.
- ii. The other side (the terminal side) rotates from the initial side.
- iii. Positive angle: counter-clockwise rotation.
- iv. Negative angle: clockwise rotation.

(b)

PROBLEM 4. Draw the following angles in standard position:

 $45^{\circ}, -\pi/4, 3\pi/2, 210^{\circ}$

***PROBLEM* 5.** Draw the following angles in standard position:

 π , 135°, 120°

(c)

Definition 1. Angles with the same terminal side are called **co-terminal**. **PROBLEM 6.** Find some angles co-terminal with the ones above.

5. Evaluating trig function from a point on terminal side

 $\sin(\theta) = y/r$ $\cos(\theta) = x/r$ $\tan(\theta) = y/x$

csc, sec, and cot are defined as the reciprocals.

PROBLEM 7. Evaluate $tan(\theta)$ and $sin(\theta)$ where (-3, -4) is a point on the terminal side of θ .

PROBLEM 8. Evaluate $tan(\theta)$ and $cos(\theta)$ where (-1, 4) is a point on the terminal side of θ .

PROBLEM 9. Evaluate $\sin(90^{\circ})$

***PROBLEM* 10.** Evaluate the following:

(a) $\cos(-180^\circ)$

(b) $\tan(-\pi/2)$

PROBLEM 11. Evaluate the following (use a special triangle if needed): $tan(225^{\circ})$ and $sin(225^{\circ})$

***PROBLEM* 12.** Evaluate the following (use a special triangle if needed): $\cos(-210^{\circ})$ and $\sec(-210^{\circ})$

6. Evaluating trig function using a reference angle

An alternative approach to evaluating trig functions of angles whose terminal side is not on the x or y axis.

- (a) Draw the angle in standard position.
- (b) Find the Reference Angle (the angle between the terminal side and the x-axis).
- (c) Evaluate the trig function at the Reference Angle.
- (d) Leave the answer as is, or modify by making negative, based on: The quadrant of the terminal side and the trig function being evaluated.
- (e)

PROBLEM 13. Evaluate the following: $\cos(3\pi/4)$, $\sin(3\pi/4)$, and $\tan(3\pi/4)$ ***PROBLEM* 14.** Evaluate the following: $\sin(7\pi/6)$ and $\csc(7\pi/6)$

7. Solving for the angle

To find SOME angle that works:

- (a) Find a reference angle which gives the positive value
- (b) Pick an angle that has that reference angle, and the correct sign.
- (c) Problems

PROBLEM 15.

- i. Suppose $\tan \theta = -1$. Find some solution θ .
- ii. Suppose $\cos \theta = -1/2$. Find some solution θ .

PROBLEM 16.

- i. Suppose $\tan \theta = -\sqrt{3}$. Find some solution θ .
- ii. Suppose $\sin \theta = -1/2$. Find some solution θ .