MTH 32 LECTURE NOTES (Ojakian) Topic 12: L'Hospital's Rule

OUTLINE (References: Calc I book! ... 4.8)

- 1. Determinate Forms
- 2. Indeterminate Forms
- 3. L'Hospital's Rule

1. <u>Determinate Forms</u>

PROBLEM 1. Evaluate each limit and "state its form."

(a)
$$\lim_{x \to -\infty} \frac{100e^x}{x^2}$$

(b) $\lim_{x \to 0^+} \frac{7\ln(x)}{11e^x}$

(c)
$$\lim_{x \to \infty} \frac{3x^2 + x}{4x^2 + 100}$$

- (d) $\lim_{x\to 0^+} (1/x) \cdot \ln(x)$
- (e) $\lim_{x \to \infty} \sqrt{x} 10,000$

2. <u>Indeterminate Forms</u>

PROBLEM 2. For each "form" find two examples giving different answers.

- (a) $\frac{\infty}{\infty}$
- (b) $\infty \cdot 0$

***PROBLEM* 3.** For each "form" find two examples giving different answers.

- (a) $\infty \infty$
- $(b) \ \frac{0}{0}$

3. L'Hospital's Rule

Question: What is L'Hospital's Rule? (Problems from CALCULUS ONE textbook!)

(a) Quotient

PROBLEM 4. From TEXTBOOK (section 4.8) do: 356, 358 ***PROBLEM* 5.** From TEXTBOOK (section 4.8) do: 357

(b) Product

<u>Strategy</u>: Convert to Quotient (by flipping one expression to the bottom). **PROBLEM 6.** From TEXTBOOK (section 4.8) do: 362, 383
***PROBLEM* 7.** From TEXTBOOK (section 4.8) do: 387

(c) Difference

 $\frac{\text{Strategy: Convert to quotient (by finding common denominator, then combining into one fraction).}$

PROBLEM 8. From TEXTBOOK (section 4.8) do: Example 4.41 ***PROBLEM* 9.** $\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x)$

4. <u>Practice Problems</u>

***PROBLEM* 10.** From WORK BOOK, do section 12: #2: a, b, c, f, g; and #3