MTH 32 LECTURE NOTES (Ojakian)

Topic 10: Partial Fractions

OUTLINE

(References: 3.4)

1. Preliminary Tools
(a) Factoring Polynomials
(b) Division of polynomials
2. Partial Fraction Decomposition
3. Integration using Partial Fraction Decompositions

1. Preliminaries

(a) Factoring

PROBLEM 1. Factor the polynomial $\left(x^{3}+x\right)\left(x^{2}+6 x-7\right)\left(x^{2}-1\right)$ into a product of linear and quadratic polynomials.
PROBLEM 2. How do you know when a quadratic factor cant be broken down further? (Answer: If it has real zeros. Check for zeroes by either: Graphing or Quadratic Equation).
PROBLEM 3. Which of the following can be factored further and which cannot?
i. $2 x^{2}-8$
ii. $2 x^{2}+8$
iii. $x^{2}-2 x+5$
iv. $x^{2}-10 x+25$
PROBLEM 4. Factor the polynomial $\left(x^{3}+x^{2}+x\right)\left(x^{2}-2 x-15\right)\left(2 x^{3}-18 x\right)$ into a product of linear and quadratic polynomials.

Fact: We can always break such polynomials down into a product of linear and quadratic polynomials.
(b) Division
i. Division fact for numbers: $\frac{B}{A}=$?
ii. Division fact for polynomials: $\frac{B(x)}{A(x)}=$?
iii. Long division for numbers: $\frac{467}{20}=$?
iv. Long division for polynomials

PROBLEM 5. Divide the polynomials: $\frac{2 x^{3}-9 x^{2}+15}{2 x-5}$
PROBLEM 6. Divide the polynomials: $\frac{x^{3}+2 x}{x-1}$

2. Preliminary: Partial Fraction Decompositions

NOTE: Restrict to denominators with factorization into LINEAR factors.

Goal: Write $\frac{\text { polynomial }_{1}}{\text { polynomial }_{2}}=\frac{\text { number }_{1}}{\text { simple polynomial }} 1+\frac{\text { number }_{2}}{\text { simple polynomial }} 2 \mathrm{~F}, \cdots$
PROBLEM 7. Find the Partial Fracion Decomposition of $\frac{4 x}{x^{2}-2 x-8}$
Method:
(a) If necessary divide (if top degree \geq bottom degree)
(b) Factor the denominator (i.e. the bottom).
(c) For each factor \mathcal{F} on the bottom create a fraction-to-be:

- Make the bottom \mathcal{F} (for repeated factors, increment the exponents).
- Make each top a new variable
- Solve for the letters A, B, C, etc. by either 1) Clearing the fractions, or 2) Ingenius substitution.

PROBLEM 8. Find "the form" for various given Partial Fraction Decompositions.
PROBLEM 9. Find the Partial Fracion Decomposition of $\frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x}$
PROBLEM 10. Find the Partial Fracion Decomposition of $\frac{x^{5}+2 x^{4}+1}{x^{3}+x^{2}}$
3. Integration by Partial Fraction Method

PROBLEM 11. Do integrations corresponding to above ...
PROBLEM 12. Evaluate $\int \frac{x^{3}+x}{x-1} d x$

4. Practice Problems

PROBLEM 13. From Work Book, section 17: 1a, 1b, $1 c$

