MTH 32 LECTURE NOTES (Ojakian)

Topic 10: Partial Fractions

OUTLINE

(References: 3.4)

- 1. Preliminary Tools
 - (a) Factoring Polynomials
 - (b) Division of polynomials
- 2. Partial Fraction Decomposition
- 3. Integration using Partial Fraction Decompositions

1. <u>Preliminaries</u>

(a) Factoring

PROBLEM 1. Factor the polynomial $(x^3 + x)(x^2 + 6x - 7)(x^2 - 1)$ into a product of <u>linear</u> and quadratic polynomials.

PROBLEM 2. How do you know when a quadratic factor cant be broken down further? (Answer: If it has real zeros. Check for zeroes by either: Graphing or Quadratic Equation).

PROBLEM 3. Which of the following can be factored further and which cannot?

- *i.* $2x^2 8$ *ii.* $2x^2 + 8$
- *iii.* $x^2 2x + 5$
- *iv.* $x^2 10x + 25$

***PROBLEM* 4.** Factor the polynomial $(x^3 + x^2 + x)(x^2 - 2x - 15)(2x^3 - 18x)$ into a product of linear and quadratic polynomials.

Fact: We can always break such polynomials down into a product of linear and quadratic polynomials.

- (b) <u>Division</u>
 - i. Division fact for numbers: ^B/_A =?
 ii. Division fact for polynomials: ^{B(x)}/_{A(x)} =?
 iii. Long division for numbers: ⁴⁶⁷/₂₀ =?
 iv. Long division for polynomials **PROBLEM 5.** Divide the polynomials: ^{2x³ - 9x² + 15}/_{2x - 5}
 PROBLEM 6. Divide the polynomials: ^{x³ + 2x}/_{x - 1}

2. Preliminary: Partial Fraction Decompositions

NOTE: Restrict to denominators with factorization into LINEAR factors.

 $\underline{\text{Goal}}: \text{ Write } \frac{\text{polynomial}_1}{\text{polynomial}_2} = \frac{\text{number}_1}{\text{simple polynomial}_1} + \frac{\text{number}_2}{\text{simple polynomial}_2} + \cdots$

PROBLEM 7. Find the Partial Fracion Decomposition of $\frac{4x}{x^2 - 2x - 8}$

 $\underline{\mathrm{Method}} :$

- (a) If necessary divide (if top degree \geq bottom degree)
- (b) Factor the denominator (i.e. the bottom).
- (c) For each factor \mathcal{F} on the bottom create a fraction-to-be:
 - Make the bottom \mathcal{F} (for repeated factors, increment the exponents).
 - Make each top a new variable
 - Solve for the letters A, B, C, etc. by either 1) Clearing the fractions, or 2) Ingenius substitution.

PROBLEM 8. Find "the form" for various given Partial Fraction Decompositions.

***PROBLEM* 9.** Find the Partial Fracion Decomposition of $\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x}$ **PROBLEM 10.** Find the Partial Fracion Decomposition of $\frac{x^5 + 2x^4 + 1}{x^3 + x^2}$

3. Integration by Partial Fraction Method

PROBLEM 11. Do integrations corresponding to above ...

***PROBLEM* 12.** Evaluate $\int \frac{x^3 + x}{x - 1} dx$

4. <u>Practice Problems</u>

PROBLEM 13. From WORK BOOK, section 17: 1a, 1b, 1c