MTH 32 LECTURE NOTES (Ojakian) Topic 6: Exponential Growth and Decay

OUTLINE

(References: 2.8)

- 1. Exponential Growth: Concept.
- 2. Exponential Growth/Decay Applications: population growth, epidemic spread, interest, radioactive decay.

1. Exponential Growth: Background

PROBLEM 1. Consider a human population. Initially one person is infected with a disease. Every day, each person passes on the disease to one new person.

Let P(t) = the number of infected people after t days. Answer the following questions:

- (a) Make a table with t versus P(t).
- (b) Graph P(t) as best you can.
- (c) What is the ratio of P'(t) to P(t)?
- (d) Consider what the last point means for disease spread.

PROBLEM 2. With reference to the above example answer the following questions.

- (a) Why does it make sense that P'(t) increases as P(t) increases?
- (b) Why does it make sense that P'(t)/P(t) is constant?
- (c) What are examples of phenomenon that would have the above properties? What are examples of phenomenon that would not have the above properties?

Q: What does it mean to "grow at a rate proportional to your size"?

PROBLEM 3. Consider a function y(t) such that $y'(t) = k \cdot y(t)$ (where k is some constant called the "growth constant"). Answer the following questions:

- (a) What is the initial value of y(t)?
- (b) What is the growth rate of y(t)?

PROBLEM 4. "Solve": $y'(t) = k \cdot y(t)$.

Note some functions that work and ones that do not.

PROBLEM 5. Suppose a disease is spreading at an exponential rate (with growth rate 3 when time is measured in weeks), where initially 10 people are infected.

- (a) How many people are infected after 28 days?
- (b) When will a million people be infected?

PROBLEM 6. From Textbook, Section 2.7: Exercise 356

PROBLEM 7. Note that the doubling rate is constant. Consider the last problem and use that point to quickly determine when the population will reach 20 million.

2. Continuously Compounding Interest

PROBLEM 8. First consider starting with 1000 dollars and do the following compounding: Once a year, twice a year, quaterly.

And then extend to multiple years.

PROBLEM 9. Repeat the last problem but now with "continuous compounding" and bring in an alternate definition of e.

PROBLEM 10. From Textbook, Section 2.7: Exercise 365. But first do it if you get an annual interest rate that is compounded twice a year.

3. Radioactive decay and Carbon Dating

PROBLEM 11. Consider the exponential process with a negative "growth constant" ... now called "decay constant". Now what is our solution?

Note how it goes to zero faster than many functions.

PROBLEM 12. What natural phenomena follow "exponential decay"?

PROBLEM 13. Contrast the "doubling" property of exponential growth with the "halflife" property of exponential decay.

PROBLEM 14. From Textbook, Section 2.7: Exercises 354, 369