MTH 32 LECTURE NOTES (Ojakian)

Topic 3: Volumes

OUTLINE

(References: 2.2, 2.3)

1. Finding volumes using cross-section function
2. Finding volumes of rotation:
(a) Disks
(b) Shells
3. Volumes: Slicing (i.e. Cross Sections)

PROBLEM 1. From Work Book do section 3: Exercise 4.
PROBLEM 2. Find the volume of the following 3D structure: The base is a right triangle (base and height some constant c) on the yz plane, with height 2, extending along the x-axis (do it using calculus and not).
Do the problem again, but now with height and base $=x$.
2. Volumes of rotation: Disk Method
(a) Note: Involves finding cross section ourselves.

PROBLEM 3. Find the volume of the solid obtained by rotating the following region about the x-axis: the region under the curve $y=\sqrt{x}$ from 1 to 4 .
Do the problem again, but now the region goes down to the line $y=-1$ and rotate about that line.
(b) Examples
PROBLEM 4. From Work Book (section 3) do: exercies 7, 9 (as a challenge: do 8)
3. Volumes of rotation: Shells

PROBLEM 5. From Work Book (section 4): Exercise 2-and think of two ways to find the area of a cylindrical shell - exact and by approximation.

PROBLEM 6. From Work Book (section 4): Exercise 5
4. Volumes: Choose your method!

PROBLEM 7. (Conceptual Practice)
For each picture on the board do the following:

- Slicing or Rotation?
- If rotation: Disk or Shell?
- Draw a representative rectangle.
- Draw the radius.
- Setup the volume as a limit of Riemann Sums.
- Set-up the integral that computes the volume.

PROBLEM 8. From the Work Book (section 3): do exercise 10.
PROBLEM 9. From Work Book do section 3: Exercise 5 (volume of a sphere)
PROBLEM 10. Consider the graph of $y=2 x+1$ and find the volumes of for various rotations.

PROBLEM 11. From the Textbook (section 2.3, page 166), Exercises:
141 (and try region from $x=0$ to $x=3$)
144
153

