## Kerry Ojakian's MTH 32 Class Class Assignment #3

## **General Instructions:**

- You may work in a group of at most 3 students.
- Hand in **one** assignment for your group; write each group member's full name on the assignment.

## The Assignment

There are a list of integrals below. For every integral, indicate which method should be used (and justify this, but do **not** complete any integral):

- 1. Basic formula: If so state the basic formula (for example:  $\int x^k dx = \frac{x^{k+1}}{k+1}$ ).
- 2. Trig formula: If so apply the trig identity to modify the integral appropriately; then stop!
- 3. Substitution: If so, just state the substitution (for example: just  $u = 1 + x^2$ ), find du, and convert the integral to one with only u; then stop!
- 4. Parts: If so, just state what the u and dv are, find du and v, and apply the parts formula; then stop!
- 5. Trig-substitution: If so, state what the substitution is (for example:  $x = 2\sin\theta$ ), find dx, convert the integral to one with only x, and apply a trig identity to simplify; then stop!
- 6. Partial fractions: If so, factor appropriately, and write the integrand as a sum of "variables over linear factors", doing synthetic division if necessary; then stop! (do **not** solve for the variables).

1

## The Integrals

1. 
$$\int \cos^3 \theta \sin^7 \theta \ d\theta$$

$$2. \int_0^1 \frac{1}{\sqrt{\theta}} d\theta$$

3. 
$$\int \frac{1+x^2}{(x-2)^2(x-3)} \ dx$$

$$4. \int (x)(3^x) \ dx$$

5. 
$$\int_0^{\pi/2} \cos^2(u) \ du$$

$$6. \int \frac{x^4}{x-1} \ dx$$

$$7. \int \frac{1}{\sec 3s} \ ds$$

8. 
$$\int_0^1 (y^2 + 1)(e^{-y}) \ dy$$

9. 
$$\int \sin^5 \theta \cos^4 \theta \ d\theta$$

$$10. \int_0^1 w^3 \sqrt{1 - w^2} \ dw$$

$$11. \int \frac{y}{\sqrt{y^2 - 7}} \, dy$$

12. 
$$\int \cos^2(u) \sin^2(u) \ du$$

13. 
$$\int \frac{x^2 + x + 6}{x^3 - 4x} \ dx$$