- 1. Goals (Section 4.9): Newton's Method
 - a. Use: To approximate roots.
- 2. Idea: See picture on page 473
- 3. Newton's Method Steps
 - a. Pick starting approximation: X0
 - b. Repeatedly apply Newton's formula: $X_n = X_{n-1} f(X_{n-1}) / f'(X_{n-1})$
 - c. Stop when successive approximations "look close"
- 4. Examples:
 - a. Example 4.46 (page 474)
 - b. Example 4.47 Finding Square Root page 475
- 5. Why it works
 - a. Find tangent line at X0 (can use linear approximation formula)
 - b. X1 is a root, so it makes the tangent line value = 0
 - c. Solve for X1
 - d. Then consider repeating the process.
- 6. Failures of Newton's Method
 - a. Derivative = 0
 - b. Approach "wrong root" (picture above example 4.48; top of pag 477)
 - c. Non-convergence to any root (Example 4.48, page 477)
- 7. Examples
 - a. Determine "graphically" for some pictures.
 - b. Just Newton Formula: 406 410
 - c. Full Newton: 422 431
 - d. Newton to find max/min: 438 445
 - e. Apply Newton's Method to lines (including horizontal)
 - f. Examples of failure:
 - i. Apply to square root
 - ii. Apply to third root
 - iii. Explain failure with start of 1 on $x^3 3x + 6 = 0$