Topic #17 (Math 31)

- 1. Goals (Sections 4.7)
 - a. Optimization
- 2. Motivating example:
 - a. Consider all rectangles with area 100.
 - i. Which minimizes the perimeter?
 - ii. A square for any area?
 - b. Consider all rectangles with perimeter 100
 - i. Which maximizes the area?
 - ii. A square for any perimeter?
- **3.** Preparation for optimization:
 - **a.** Question: Find the maximum or minimum value of f(x) restricted to specified x values.
 - **b.** Approach: Find the absolute max or min on the relevant interval (earlier topic)
 - **c.** Examples to recall:
 - i. Find max value of $f(x) = -3x^2 + x$
 - 1. On (-infty, + infty)
 - 2. For positive x
 - **3.** On interval [1, 9]
 - ii. Find min value of $g(x) = x^3 3x + 1$
 - 1. For positive x
 - **2.** On interval [0, 1].
 - iii. Find max value of $g(x) = x^3 3x + 1$
 - **1.** On [0, 3]
 - **2.** On [0, 4]
 - **3.** For positive x
- 4. Optimization Problems
 - a. Initial Example: Sum is 9 and product max.
 - i. Do by tables
 - ii. Do by calculus
 - b. Strategy:
 - i. Name the quantities in the problem using variables
 - ii. Write down the constraining equation
 - iii. Determine the expression to be minimized or maximized
 - iv. (make it a function of one variable using the constraint)
 - v. Apply calculus to determine the max or min.
- 5. Examples:
 - a. Do starting question above.
 - b. Section 4.7: 337 340 (of given expressions)
 - c. Section 4.7: 316 322, 326 336,
 - d. Section 4.7: 341 346