GOAL: Limits.

LIMITS

- 1. Examples of "limit processes":
 - a. Area
 - b. Volume
 - c. Length: Have them write down their idea.
 - d. Tangent
- 2. Idea:
 - a. Devise a process involving an infinite number of steps, and you want the value at the last step; OR
 - b. Devise a process involving an infinite number of steps, and each step gets you closer to the final answer.
- 3. Do limit example with: $f(x) = x^2 + 3$
- 4. Working definition of limit: What is "the limit of f(x) as x approaches a"? Look at the corresponding y values to see what number they approach.
- 5. Notation: If the "limit of f(x), as x approaches a, equals L" we write: $\lim_{x \to a} f(x) = L$
- 6. Note: Do not care what happens at the number. Visual example
- 7. Examples from equation, done numerically

a.
$$f(x) = (x^3 - 1)/(x - 1)$$
 as x goes to 1 (equals 3)

- b. $f(x) = (x^2 5x + 6)/(x 2)$ as x goes to 2 (equals -1)
- 8. Note last examples: Functions with "holes"

CALCULATING LIMITS

- 9. Direct substitution: For polynomials and (where defined) rational functions.
 - a. Try in some above examples. With different limit direction for x.
- 10. Limits requiring algebra first
 - a. Do above with algebra.
 - b. $f(x) = 3(x^2 25)/(x + 5)$ as x goes to -5
 - c. $f(t) = 3(t^2 25)/((t + 5)(t 5))$ as x goes to -5, and as x goes to 5
 - d. $g(x) = 5(2x^2 5x 3)/(x 3)$ as x goes to 3

LIMITS NOT EXISTING

- 11. Section 2.2 (Page 156/157): 50 54
- 12. Example: Give limit values and sketch graph like that.
- 13. Example (visually) of graph with break; limit DNE. Do a few more visual examples
- 14. Piecewise defined examples
 - a. [MAKE ONE THAT DOES NOT]
 - b. [MAKE PIECEWISE THAT DOES EXIST]