MTH 30 LECTURE NOTES (Ojakian)

Topic 23: Last Issues ...

OUTLINE

- 1. Inverse Trig Functions (Section 6.3)
 - (a) For cos restrict domain to $[0, \pi]$
 - (b) For sin restrict domain to $[-\pi/2, \pi/2]$.
 - (c) For tan restrict domain to $\left[-\pi/2, \pi/2\right]$
 - (d) Exercises Section 6.3: 8 16
- 2. Trig Graphs (Section 6.1, 6.2)

Multiplying AND Adding inside ...

- (a) Rewrite $\sin(Bx C) = \sin(B(x \frac{C}{B}))$, i.e. shift amount is $\frac{C}{B}$
- (b) Phase Shift: $\frac{C}{B}$ (i.e. the horizontal shift), which can be left or right phase shift.
- (c) Exercises Section 6.1: 15, 16, 17
- 3. Trig Equations (Section 7.5)
 - (a) Isolate the trig function (or use algebra as if trig function is a variable)
 - (b) In harder cases, may also need some trig identities
 - (c) Find all terminal sides that work (take these angles)
 - (d) If needed get other solutions by adding any amount of 2π .
 - (e) Solve $\sin(x) = 1$ on the interval $[0, 2\pi)$
 - (f) Exercises Section 7.5: 4 9, 19 25
- 4. Polynomials : Rational Zeroes Theorem

For polynomials with integer coefficients.

- (a) Possible rational zeros = $\frac{\text{factor of constant}}{\text{factor of leading}}$
- (b) Exercises Section 6.5: 22 32
- 5. Polynomials : Remainder Theorem
 - (a) Recall Factor Theorem: k is a zero of a polynomial is EQUIVALENT to (x k)is a factor
 - (b) Remainder Theorem: Evaluating a polynomial at k yields the remainder when the polynomial is divided by (x-k)
- 6. <u>Lines</u>
 - (a) Recall: Two lines are Parallel if they have the same slope.
 - (b) Two lines are perpendicular if their slopes are "negative reciprocals", that is if one has slope m, then the other has slope $-\frac{1}{m}$