MTH 30 LECTURE NOTES (Ojakian)

Topic 22: Trigonometric Identities

OUTLINE

(References: 7.1, 7.2)

1. Recall: Identities in general

PROBLEM 1. One is an identity, one is not. Which is which? (and note: even a NON-identity can be true sometimes ...)
(a) $x+12 x-4 x=3 x+6 x$
(b) $x+12 x-4 x=3 x+10 x$

PROBLEM 2. For the true identity, prove it is an identity.
2. Basic Trig Identities

Two general activities: Proving identities AND using identities for simplification/calculation
PROBLEM 3. Note the basic trigonometric identities on the sheet. Observe that they are true by evaluating for some angles.
3. Using Trig Identities in Calculation and Simplification
(a) Section 7.2, exercies 4-7
(b) Section 7.1, exercises 16, 17, 18 (simplifying in terms of sin and cos)
(c) Section 7.2, exercises 10-13 (simplifying in terms of sin and cos)
4. Proving Trig Identities

PROBLEM 4. Derive a few other useful trig identities from the basic trig identities.
(a) $\sin ^{2} \theta=1-\cos ^{2} \theta$
(b) $\cos ^{2} \theta=1-\sin ^{2} \theta$

PROBLEM 5. Section 7.1, exercises 29-33, 40-42
PROBLEM 6. Section 7.2, exercises 49-51
PROBLEM 7. Prove that $\cos ^{2} \theta \tan ^{2} \theta=\sin ^{2} \theta$.
PROBLEM 8. $\sec ^{2}(x)-\tan ^{2}(x)=1$
PROBLEM 9. Prove that $5 \sin ^{2} \theta+4 \cos ^{2} \theta=\sin ^{2} \theta+4$.
PROBLEM 10. Prove that $\frac{1+\sin \theta}{\cos \theta}=\frac{\cos \theta}{1-\sin \theta}$

