MTH 30 LECTURE NOTES (Ojakian)

Topic 20: Expanding the trigonometric functions

OUTLINE

(References: 5.4, 5.2, 5.3)

1. Angles in standard position
2. Evaluating trig functions for any angle
3. First define on triangle
(a) The 6 trig functions on angles between 0 and 90 degrees.
(b) \sin , \cos , \tan and reciprocals: $\mathrm{csc}, \mathrm{sec}, \cot$
4. Solving Triangles
(a) Solving a right triangle when you know TWO sides:
i. Just the Pythagorean theorem!
(b) Solving a right triangle when you know ONE side and ONE angle:
i. Apply a trig function of the angle which includes the unknown side and a known side.
ii. Solve for the unknown side.
(c) Like 5.4: 10 to 16

PROBLEM 1. Solve each right $\triangle A B C$ using the given information. In each case $m \angle C=90^{\circ}$.
i. $m \angle A=80^{\circ}, b=72$.
ii. $m \angle A=30^{\circ}, c=33$.
3. Applications
(a) Devise a strategy for finding the distance across a lake?
(b) Devise a strategy for finding the distance across a river? (what is the relevant difference between a lake and a river)
(c) Like 5.4: 46 to 51,52 to 56

PROBLEM 2. The angle of elevation of the top of a fir tree is 68° from an observation point 70 ft . from the base of the tree. Find the height of the tree.
PROBLEM 3. The angle of depression from the top of the Empire State Building to a hot dog stand is 60°. How far away is the hot dog stand? (what nonmathematical missing piece of information do we need?)
4. Why expand trig functions?

Consider graphing sine between 0 and 90 . What happens if we continue?
(a) Sound waves
(b) Light waves
(c) Length of a day over a year
(d) Etc!
5. Representing angles with any measure
(a) Standard position:
i. One side (the initial side) points in the positive x -direction.
ii. The other side (the terminal side) rotates from the initial side.
iii. Positive angle: counter-clockwise rotation.
iv. Negative angle: clockwise rotation.
(b)

PROBLEM 4. Draw the following angles in standard position:

$$
45^{\circ},-45^{\circ}, 270^{\circ},-90^{\circ}, 135^{\circ}, 120^{\circ}, 450^{\circ}, \pi
$$

(c)

Definition 1. Angles with the same terminal side are called co-terminal.
PROBLEM 5. Which of the above angles are co-terminal. Find yet another angle co-terminal with them.
6. Evaluating trig function from a point on terminal side

$$
\sin (\theta)=y / r
$$

$\cos (\theta)=x / r$
$\tan (\theta)=y / x$
csc, sec,and cot are defined as the reciprocals.
PROBLEM 6. Evaluate the following:
(a) $\tan (\theta)$ and $\sin (\theta)$ where $(-3,-4)$ is a point on the terminal side of θ.
(b) $\cot (\theta)$ and $\sec (\theta)$ where $(-1,4)$ is a point on the terminal side of θ.

PROBLEM 7. Evaluate the following:
(a) $\sin \left(90^{\circ}\right)$
(b) $\cos \left(-180^{\circ}\right)$
(c) $\tan (-\pi / 2)$

7. When the terminal point is harder to find

(a) Use pythagorean theorem to find.
i. For multiple of 45 degrees: $x=y$
ii. For multiple of 30 or 60 : One of x or y is $1 / 2$. Find other.
(b)

PROBLEM 8. Evaluate the following (use a special triangle if needed):
i. $\tan \left(225^{\circ}\right)$ and $\sin \left(225^{\circ}\right)$
ii. $\cos \left(-210^{\circ}\right)$ and $\sec \left(-210^{\circ}\right)$
8. Evaluating trig function using a reference angle

An alternative approach to evaluating trig functions of angles whose terminal side is not on the x or y axis.
(a) Draw the angle in standard position.
(b) Find the Reference Angle (the angle between the terminal side and the x-axis).
(c) Evaluate the trig function at the Reference Angle.
(d) Leave the answer as is, or modify by making negative, based on:

The quadrant of the terminal side and the trig function being evaluated.
(e)

PROBLEM 9. Evaluate the following:
i. $\cos \left(135^{\circ}\right), \sin \left(135^{\circ}\right)$, and $\tan \left(135^{\circ}\right)$
ii. $\sin (7 \pi / 6)$ and $\csc (7 \pi / 6)$
9. Evaluating trig expressions

PROBLEM 10. Evaluate the following.
(a) $\tan \frac{\pi}{4}+\cot \frac{7 \pi}{4}$
(b) $\sec ^{2} \frac{5 \pi}{6}$

