MTH 30 LECTURE NOTES (Ojakian) Topic 20: Expanding the trigonometric functions

OUTLINE

(References: 5.4, 5.2, 5.3)

- 1. Angles in standard position
- 2. Evaluating trig functions for any angle

1. First define on triangle

- (a) The 6 trig functions on angles between 0 and 90 degrees.
- (b) sin, cos, tan and reciprocals: csc, sec, cot

2. Solving Triangles

- (a) Solving a right triangle when you know TWO sides:
 - i. Just the Pythagorean theorem!
- (b) Solving a right triangle when you know ONE side and ONE angle:
 - i. Apply a trig function of the angle which includes the *unknown* side and a *known* side.
 - ii. Solve for the unknown side.
- (c) Like 5.4: 10 to 16

PROBLEM 1. Solve each right $\triangle ABC$ using the given information. In each case $m \angle C = 90^{\circ}$.

- *i.* $m \angle A = 80^{\circ}, b = 72.$
- ii. $m \angle A = 30^o, c = 33.$
- 3. Applications
 - (a) Devise a strategy for finding the distance across a lake?
 - (b) Devise a strategy for finding the distance across a river? (what is the *relevant* difference between a lake and a river)
 - (c) Like 5.4: 46 to 51, 52 to 56

PROBLEM 2. The angle of elevation of the top of a fir tree is 68° from an observation point 70 ft. from the base of the tree. Find the height of the tree.

PROBLEM 3. The angle of depression from the top of the Empire State Building to a hot dog stand is 60° . How far away is the hot dog stand? (what nonmathematical missing piece of information do we need?)

4. Why expand trig functions?

Consider graphing sine between 0 and 90. What happens if we continue?

- (a) Sound waves
- (b) Light waves
- (c) Length of a day over a year
- (d) Etc!

5. Representing angles with any measure

- (a) Standard position:
 - i. One side (the **initial side**) points in the positive x-direction.
 - ii. The other side (the **terminal side**) rotates from the initial side.
 - iii. Positive angle: counter-clockwise rotation.
 - iv. Negative angle: clockwise rotation.

(b)

PROBLEM 4. Draw the following angles in standard position:

 $45^{\circ}, -45^{\circ}, 270^{\circ}, -90^{\circ}, 135^{\circ}, 120^{\circ}, 450^{\circ}, \pi$

(c)

Definition 1. Angles with the same terminal side are called **co-terminal**. **PROBLEM 5.** Which of the above angles are co-terminal. Find yet another angle co-terminal with them.

6. Evaluating trig function from a point on terminal side

 $\sin(\theta) = y/r$ $\cos(\theta) = x/r$ $\tan(\theta) = y/x$

csc, sec, and cot are defined as the reciprocals.

PROBLEM 6. Evaluate the following:

- (a) $\tan(\theta)$ and $\sin(\theta)$ where (-3, -4) is a point on the terminal side of θ .
- (b) $\cot(\theta)$ and $\sec(\theta)$ where (-1, 4) is a point on the terminal side of θ .

PROBLEM 7. Evaluate the following:

- (a) $\sin(90^{\circ})$ (b) $\cos(-180^{\circ})$
- (c) $\tan(-\pi/2)$

7. When the terminal point is harder to find

- (a) Use pythagorean theorem to find.
 - i. For multiple of 45 degrees: x = y
 - ii. For multiple of 30 or 60: One of x or y is 1/2. Find other.
- (b)

PROBLEM 8. Evaluate the following (use a special triangle if needed):

- *i.* $\tan(225^{\circ})$ and $\sin(225^{\circ})$
- ii. $\cos(-210^{\circ})$ and $\sec(-210^{\circ})$
- 8. Evaluating trig function using a reference angle

An alternative approach to evaluating trig functions of angles whose terminal side is not on the x or y axis.

- (a) Draw the angle in standard position.
- (b) Find the Reference Angle (the angle between the terminal side and the x-axis).
- (c) Evaluate the trig function at the Reference Angle.
- (d) Leave the answer as is, or modify by making negative, based on: The quadrant of the terminal side and the trig function being evaluated.
- (e)

PROBLEM 9. Evaluate the following:

- *i.* $\cos(135^{\circ})$, $\sin(135^{\circ})$, and $\tan(135^{\circ})$
- *ii.* $\sin(7\pi/6)$ and $\csc(7\pi/6)$
- 9. Evaluating trig expressions

PROBLEM 10. Evaluate the following.

(a)
$$\tan \frac{\pi}{4} + \cot \frac{7\pi}{4}$$

(b) $\sec^2 \frac{5\pi}{6}$