MTH 28.5 LECTURE NOTES (Ojakian)

Topic 19: Lines

OUTLINE

References: (Algebra Book: pages 95-105; Statistics Book: None)

- 1. Linear versus non-linear equations
- 2. Lines
- 3. Intercepts and Slope

1. Lines versus NOT Lines

PROBLEM 1. For each equation, guess which ones have a graph that <u>is a line</u>, and which ones have a graph that is <u>not a line</u>.

(a) y = -x(b) $y = x^{2} + 3$ (c) y = 2 + x(d) $y = -3x^{5} - 10$

PROBLEM 2. Can you think of a method for determining which equations have a line for a graph?

2. Linear Equations

Definition 1. An equation in two variables (x and y) is called **linear** if can be simplified to the form: "y = Mx + B" (or "x = C" or "y = C" ...)

PROBLEM 3. Consider the equations we have looked at so far. Which ones are linear? Which ones are non-linear?

Theorem 1.

- The graph of a linear equation is a line.
- Any line can be described with some linear equation.

3. Y-Intercept

Note: We ignore the details of X-intercept ...

- (a) Recall the definition of x-intercepts and y-intercepts.
- (b) To find y-intercepts (for line y = Mx + b): Set x = 0, then solve for y.

PROBLEM 4. For each equation, find the y-intercepts of its graph.

1

i. y = 3x + 3*ii.* y = (1/2)x - 5

4. Graphing a line

PROBLEM 5. Consider problem 4. Graph each of the equations.

- (a) To graph a line:
 - i. Find any two points (such as x and y intercepts).
 - ii. Connect the points by a straight line

5. Slope

Slope: A number that measures the "steepness" of a line.

- (a) Finding slope by "lining up the points"
 - i. Line up points and subtract
 - ii. Get the y-change
 - iii. Get the x-change.
 - iv. Slope = $\frac{y \text{change}}{z}$
 - $\overline{x \text{change}}$
 - v. Note: Be careful of sign!

(b)

PROBLEM 6. Suppose a line contains the following points: (0,1), (2,5), (-1,-1). Find its slope.

Theorem 2. The slope of a line is the same, no matter what two distinct points are used to compute it.

PROBLEM 7. Find the slope of the line y = 2x + 3

***PROBLEM* 8.** Describe the difference between a line with positive slope versus a line with negative slope.

6. Slope and intercept in the line equation

PROBLEM 9. Based on the above problems, guess a fast way to determine the slope of a line.

- (a) Line with slope m and y-intercept b has equation y = mx + b.
 - i. Example: From equation of line to slope and intercept.
 - ii. Example (reverse): From slope and intercept to equation of line.
- (b) Using M and B to graph a line
 - i. Use the y-intercept as one point.
 - ii. Use the slope to find a second point:
 - A. Write slope as $\frac{(+ \text{ or } -) V}{r}$ H
 - B. Start at the y-intercept
 - C. Move to the right H
 - D. Move up or down V (up for positive slope, down for negative)