MTH 23 LECTURE NOTES (Ojakian) Topic 8: Binomial Distribution and Background

OUTLINE

References (Algebra Book: None; Statistics Book: 3.5, 4.3)

1. Tree Diagrams (3.5)

2. Binomial Distributions (4.3)

1. Inequality Background

Do problems like the first four webwork problems and ones like problem 5.

- 2. Calculation Background
 - (a) Exponents

(b) Factorial

(c)
$$C_{n,r} = \frac{n!}{r! \cdot (n-r)!}$$
 = number of subsets of S of size r (S is any set with n elements).

(d)

PROBLEM 1. Calculate the following:

i. $(0.4)^3$ ii. 3! iii. 1! iv. 0! v. $5 \cdot (10 - 8)!$ vi. $C_{3,2}$ vii. $(0.1)^4$ viii. 4! ix. $C_{4,1}$

3. Repeated Trials and Tree Diagrams

(a) Note: WITH and WITHOUT replacement. Represent the following using tree diagrams.

PROBLEM 2. Two cards are drawn from a regular deck of 52 cards, with replacement. What is the probability that the first card is an ace and the second is a king? What is the probability the first card is NOT an ace and the second is a king?

PROBLEM 3. Two cards are drawn from a regular deck of 52 cards, without replacement. What is the probability that the first card is an ace and the second is a king? What is the probability the first card is NOT an ace and the second is a king?

PROBLEM 4. A jar contains 2 red marbles, 5 blue marbles, and 5 yellow marbles.

- i. Suppose you take 2 marbles, without replacement. What is the probability that you take 1 blue and 1 yellow, in any order.
- *ii.* Suppose you take 2 marbles, with replacement. What is the probability that you take 1 blue and 1 yellow, in any order.
- *iii.* Suppose you take 3 marbles, without replacement. What is the probability that all are red?
- iv. Suppose you take 3 marbles, without replacement. What is the probability that at least one is not red?

4. <u>Binomial Distribution</u>

(a) Binomial Experiment Example

- i. Flip the same coin 3 times and count the number of heads (biased so probability of heads is 0.2). What is the probability of all heads? What is the probability of 2 heads? Etc? Draw a probability tree diagram. Draw a histogram of the distribution.
- ii. Parameters/Terminology
 - n = number of trails
 - p =probability of "success"
 - q = probability of "failure"
 - r = number of successes
 - P(r) =probability of r successes
 - P(r < x) = probability of less than x successes (ETC.)
- iii. Using Excel
 - A. BINOM.DIST(r, n, p,FALSE): For probability of exactly r successes.
 - B. BINOM.DIST(r, n, p,TRUE): For probability of r or fewer successes.PROBLEM 5. Use Excel to verify the above calculations.

iv.

PROBLEM 6. Use Excel for this question. From Section 6.2 (5th edition), do problem 14. Also answer these questions:

- A. What is the probability that exactly 3/4 of the men are wearing their ties too tight?
- B. What is the probability that at least 3/4 of the men are wearing their ties too tight?

(b) Key formula

 $P(r \text{ successes }) = C_{n,r}p^rq^{n-r}$

Along with the rest of probability theory! (complements, multiplication rule, addition rule, etc)

PROBLEM 7. Use the formula to calculate some of the above probabilities by hand.

PROBLEM 8. From Section 6.2, do problem 15. Do it by hand, and using Excel.

(c) Expectation of binomial distribution Expectation = np

PROBLEM 9. Steve Nash has the highest career foul shooting percentage of 90.4% (stats based on the last time I checked ...).

- i. If he shoots 100 foul shots, how many do we expect to go in?
- ii. If he shoots 25 foul shots, how many do we expect to go in?
- iii. Do a simulation of 25 foul shots in Excel using RAND, to see how many go in. How close is the simulation to the expected value?
- (d) Standard Deviation, $\sigma = \sqrt{npq}$