Kerry Ojakian's MTH 23 Class

Due Date: Tuesday December 7

HW \#3

General Instructions:

- Do not write answers and work on a printout of this homework. Put all answers and work on separate paper (no need to copy the question).
- Homework must be relatively neat.
- Homework exercises must be done in order (if you skip an exercise, still write down the number and leave some blank space).
- You must show all work.
- While you may work with other students or tutors, do not copy someone else's work or data, or have someone else do the work for you.

The Assignment

1. Let x be a random variable that represents the amount of sugar in the blood, detected by a doctor's test. Suppose that x is normaly distributed with mean 85 and standard deviation 25.
Note: Use Excel only on part (b).
(a) What is the probability that on a single test, the amount of sugar is less than 60 ? (do NOT use the Excel command)
(b) (Use Excel) Suppose that the doctor takes 10 tests and finds the average: \bar{x}.
i. Why is the distribution \bar{x} normal?
ii. What is the mean and standard deviation of \bar{x} ?
iii. What is the probability that \bar{x} is less than 60 ?
iv. Why is the last probability smaller than the probability from part (a), which also asks about 60 ?
2. (Use Excel) Suppose a sample of some lions in California is taken and their weights (in pounds) are: $68,104,128,122,60,64$. We can calculate that $\bar{x}=91$ and the standard deviation is 30.7 (you do not need to calculate these values; just trust that they are correct).
Find a 80% confidence interval for the mean weight of lions in California.
3. Suppose μ represents the average height of men in The Bronx. Someone takes a random sample of 35 men from The Bronx and finds that the mean height of these 35 men is 68 inches, and the standard deviation for these 35 men is 5 inches.
(a) Find a 70% confidence interval for μ.
(b) Without a calculation answer this question: Suppose you stuck with the sample of 35 men, but wanted a 95% confidence interval. Would the 95% confidence interval be larger or smaller than the interval from part (a)? Justify your answer (briefly, without a calculation).
4. Suppose we have the following data set:

$$
X: \quad x_{1}=2, \quad x_{2}=-3, \quad x_{3}=2, \quad x_{4}=0, \quad x_{5}=4, \quad x_{6}=-1
$$

Evaluate the following:
(a) $\sum x$
(b) $\left(\sum x\right) / 6$
(c) What is the mean of the data?
(d) What is the median of the data?
(e) What is the mode of the data?
(f) What is the range of the data?
(g) What is the sample standard deviation of the data? (Use Excel)
5. (a) Compute a 75% Chebyshev interval for some data that has mean 40 and standard deviation 5 .
(b) For the Chebyshev interval you just computed, if you were told that it was a normal distribution, then how much data would be in the interval?
6. Suppose three 6 -sided dice are rolled (each die is numbered 1 to 6). Use the fact the three rolls are independant!
(a) What is the probability that the three rolls in order are: $3,1,1$.
(b) What is the probability that among the three dice you only get 5 s and 6 s ?
7. Given $\mathrm{P}(\mathrm{A})=0.3$ and $\mathrm{P}(\mathrm{B})=0.4$ and $\mathrm{P}(\mathrm{A}$ and B$)=0.2$, calculate the following:
(a) $P(A \mid B)$
(b) $P(B \mid A)$
(c) $P(A$ or $B)$
8. In the USA, four year colleges have a graduation rate of about 60%, and two year colleges (like Bronx Community!) have a graduation rate of about 30\% (yes, I believe these percentages are correct!).
As a social note: these numbers are not great! (I hope you can do all you can, and we can help you do all you can, to be in that 30% !).
(a) Suppose there are 16 two year college students in a class. What is the probability that 5 or fewer graduate? (Use the Excel command)
(b) Suppose there are 16 two year college students in a class. What is the probability that at least half of them graduate? (Use the Excel command)
(c) Suppose there are 10 students in a class at a four year college. What is the probability that they all graduate? Do this problem using the formula, without the Excel command.
(d) Use Excel to experiment and answer this question: Consider different numbers of two year college students (call this number n). What is the largest that you can choose n so that the probability that all of them graduate is greater than the chance that 10 four year college students graduate?
(e) What are you going to do to make sure you're in the 30% ?!
9. Open Stax Textbook, page 427, exercises: 3, 4, 5
(Note: The needed numbers are given on page 426)
10. Open Stax Textbook, page 477, exercises: 6 to 12
(Note: Good quesiton! Some will make you think ...)

