MTH 23.5 LECTURE NOTES (Ojakian)

Topic 11: Confidence Intervals

OUTLINE

References (Algebra Book: None; Statistics Book: 8.1)

1. Inverse Normal
2. Finding confidence intervals using Excel

1. Inverse Normal

PROBLEM 1. Consider a normal distribution with a mean of 15 and standard deviation of 3.
(a) Find the x value, such that 0.5 of the area is to left of this x.
(b) Find the x value such that 2.5% of the data is to the left (use empircal rule).
(c) Find the x value such that 2.5% of the data is to the right (use empiral rule).

Use Excel: Norm.inv(probability, mean, standard deviation)
Do Webwork
2. Overview
(a) Have some population and an unknown population mean μ.
(b) Choose a "confidence level": A percent, $P \%$, between 0% and 100%. Typical examples of choices: $90 \%, 95 \%, 99 \%$.
(c) Sample from the distribution in order to get an approximation (called \bar{x}) for μ.
(d) Use that information to obtain a " $P \%$ confidence interval (a, b) for μ ".
(e) The probability you pick an interval (a, b) that contains μ is $P \%$.
(f) Example: Suppose the newspaper tells you that $(22.1,25.8)$ is a 90% confidence interval for the average age of a college student. This means that you can be 90% confident that the average age of a college student is in between 22.1 and 25.8.

3. Confidence Intervals

Note how we are NOT doing it the way the book does it. We are using a simplifed approach!

Note: we will always assume the standard deviation is known!
(a) Given Information:
i. Given: You are given the standard deviation σ.
ii. Given: You are given a confidence level c (as a percent or a decimal)
iii. Given: You are given (or find) the sample mean \bar{x} (possibly a different letter is used)
iv. Given: You are given the n corresponding to the sample mean.
(b) Calculations:
i. Find the standard deviation of the sampling distribution $=\frac{\sigma}{\sqrt{n}}$
ii. Consider the normal distribution with mean \bar{x} and the standardard deviation from the last line.
iii. For this distribution, find the interval (LEFT, RIGHT) centered at \bar{x} which contains c of the area:
A. Find the excluded area on each side $=\frac{1-c}{2}$
B. $\mathrm{LEFT}=$ norm.inv (excluded area, mean, SD)
C. RIGHT $=$ norm.inv $(c+$ excluded area, mean, SD$)$
(c) Other points:
i. error tolerence: $E=$ distance from \bar{x} to either the left or right endpoint.
ii. If data known to be normally distributed, then this works for any size n; otherwise, a rule of thumb: n should be at least 30 .
(d)

PROBLEM 2. Suppose that for some data $\bar{x}=2000$ and $\sigma=100$. Suppose we are computing a confidence interval with confidence level 0.90. Find three confidence intervals, one for each of the following values of n : 30, 80, 500. Also find the error tolerences.
What can you say in general?

PROBLEM 3.

i. Suppose you are computing a 92% confidence interval. How much total area is excluded from consideration in your normal distribution? How much is exluded on the left? How much on the right?
ii. For a normal distribution, suppose the error tolerence is 5 and the sample mean is 20. What is the corresponding confidence interval?
iii. For a normal distribution with mean 10 and standard deviation 2, find an interval around the mean which includes 80% of the area of the curve.

PROBLEM 4. From section 8.1 (5th edition): Exercise 15.

