CALCULATING STANDARD DEVIATION (Ojakian - Modified from online document)

Mean: \qquad 6 \qquad $n:$ \qquad 6_(pure coincidence) \qquad

$$
70 / 5=14<
$$

Sum of (Difference from the Mean) ${ }^{2}$ divided by degrees of freedom $(n-1)$: \qquad \rightarrow This is called sample variance.

$$
\frac{\sum(x-\bar{x})^{2}}{(n-1)}=
$$

Sample Standard deviation = square root of what you just calculated (sample variance).

$$
\text { Sample Standard deviation }=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}=[\sqrt{14}=2,74
$$

For the population versions just change the " $n-1$ " to an " n ".

$$
\begin{aligned}
& p_{\text {op }} V_{\text {ar }}=70 / 6=11.67 \\
& p_{\text {op }} 50=\sqrt{11.67}=3.42
\end{aligned}
$$

