CSI 35 LECTURE NOTES (Ojakian)

Topic 9: Introduction to Graphs

OUTLINE

(References: Wells: 152 - 156, Finan: Ch. 7, Rosen: 10.1, 10.2, 10.3)

1. Basic terminology of graph theory

1. Graph Definitions and Applications

- (a) Definition: Simple Graph (for example: Friendship Network)
 - i. Vertices = Nodes
 - ii. Edges
- (b) Definition: Multi-Graphs (for example: network of roads)
- (c) Definition: Directed Graphs (for example: Web links)
 - i. Edges = Arcs
- (d) Adjacent, neighbor, and neighborhood.
- (e) Vertex list representation
 PROBLEM 1. Enter a graph into SAGE using list representation and plot it. Also list and count the number of edges.
- (f) Matrix Representation (of simple graphs) by adjacency matrix. **PROBLEM 2.** Get the adjacency matrix of the last graph using Sage Math. **PROBLEM 3.** Enter a graph into SAGE using adjacency matrix and plot it.

2. Some Special Graphs

- (a) Cycle (C_n)
- (b) Path (P_n)
- (c) Complete (K_n)
 PROBLEM 4. How many edges are in K_n? (exercise 481 from Finan) Give a proof by induction.
- (d) Bipartite

PROBLEM 5. Wells Exercise 153.3.3 (identifying bipartite graphs).

(e) Tree (connected and acyclic). We'll return to.

3. <u>Basic Definitions</u>

- (a) Subgraphs and Induced Subgraphs
- (b) Degree of vertex (and out-degree and in-degree in directed graph)
- (c) Handshaking Lemma

PROBLEM 6. Demonstrate (in Sage and/or by physically doing it) and prove the Handshaking Lemma.

PROBLEM 7. In any simple graph, how many odd degree vertices are there? **PROBLEM 8.** What is the similar lemma for directed graphs, that connects outdegree and indegree to the number of edges? Prove it.

4. Traveling through a graph

Note: Due to variation in terminology, we will use decriptive names!

- (a) "Path"
- (b) "Path with no edge repeats"
- (c) "Path with no repeats"
- (d) Shortest Path (and distance and diameter)

5. Connectivity Issues

- (a) Connected
- (b) Connected Components
- (c) Recall Trees
- 6. Isomorphism
 - (a) Definition
 - (b) Invariants: Number of vertices and edges, degree sequence, etc. **PROBLEM 9.** *What are other invariants?*
 - (c)

PROBLEM 10. Wells Exercise 155.1.4. And try some graphs in Sage.

7. An application and a simulation

Small world phenomena (6 degrees of separation ...).

PROBLEM 11. Create a random graph that simulates the world and its connections, and see what the degree of separation is.