CSI 35 LECTURE NOTES (Ojakian)

Topic 8: Relations

OUTLINE

(References: Wells 51 - 53, 55 - 59, 117, 129, 130, 132 - 137; Rosen 9.1, 9.2, 9.3, 9.5, 9.6)

- 1. Relations: Definitions and Examples
- 2. Properties: Reflexivie, Symmetric, Transitive
- 3. Equivalence Relations and Partitions

1. <u>Relations</u>

- (a) Binary and *n*-ary
 - i. Subset of Cartesian product.
 - ii. Notations: $(a, b) \in R$, or R(a, b), or aRb.
 - iii. Do some small finite examples.
- (b) Some more involved examples.
 - i. < on the rationals
 - ii. Congruence mod n
 - iii. (x, x^2) and (x^2, x) , for x real.
 - iv. $\{(x, y, z, n) \mid x, y, z, n \text{ are positive integers and } x^n + y^n = z^n\}$
- 2. Representing Relations (mostly binary ones)
 - (a) Table or listing
 - (b) Graph "on the plane"
 - (c) Two columns with arrows
 - (d) Digraph
- 3. <u>Functions</u>
 - (a) Example: (x, x^2) versus (x^2, x) from above.
 - (b) Definition of "functional relation" or a "relation which is a function".
 - (c) The "Vertical Line Test".
 - (d) Consider some small finite examples, some are, some are not.

4. Typical Properties for Binary Relations on a Set

- (a) Definition: Binary relation on a set.
- (b) Reflexive (and Irreflexive)
 - i. Example: \leq and <
- (c) Symmetric (and anti-Symmetric)
 - i. Example: Congruence and \leq
 - ii. Do Rosen 9.1, 49 (Mistaken Proof).
- (d) Transitive
 - i. Example: \leq
 - ii. Hasse Diagrams for Transitive relations
- (e) Note! If you make up a "random" relation, it probably has none of the above properties.
- 5. Examples for Reflexive, Symmetric, and Transitive

PROBLEM 1. Do Wells 59.1.3

PROBLEM 2. Do Wells 55.1.9.

PROBLEM 3. Do Wells 56.1.4.

PROBLEM 4. Do Wells 59.1.4.

PROBLEM 5. Begin Wells 58.1.10 (finishing it will be a question on the next class work).

PROBLEM 6. Consider the set of subsets of $\{1, 2, 3\}$. Which properties does it have? Note: This is a partial order. Draw a Hasse Diagram.

6. Equivalence Relations

Basic Examples: i) Equality. ii) Being the same color card.

PROBLEM 7. Find 2 different equivalence relations on the set $\{a, b, c\}$.

PROBLEM 8. Do Wells 129.2.2 and 129.2.9.

PROBLEM 9. Prove that for any n, congruence mod n, is an equivalence relation.

- 7. Partitions
 - (a) Example: Wells 117.1.13.
 - (b) Do Wells 117.1.9.
 - (c) Example: Congruence mod n partition.

8. Equivalence relations versus Partitions

Example: Congruence mod n.

- (a) From Equivalence Relation to Partition: via Quotient Sets.
 - i. Example: Wells 132.2.2
- (b) From Partition to Equivalence Relations: being in the same piece.
 - i. Example: Take any finite equivalence relation.
 - ii. Example: Use the partition that we got in Wells 132.2.2.
- (c) The fundamental theorem relating Partitions to Equivalence Relations.

9. More examples

- (a) Equivalence relation on strings such that xEy if x and y are the same length.
- (b) Equivalence relation on R, making two numbers equivalent if their decimal expansions agree down to and including the 1/100s place.
- (c) Equivalence relation on directed paths, taking two paths to be equivalent if the paths are the same length.
- (d) Make up one: Choose parameters for people, so each person is a list of attributes. Then choose what you care about and what you don't care about.