CSI 35 LECTURE NOTES (Ojakian)

Topic 7: Recursion

OUTLINE

(References: Wells sections 105-107, 124, 125)

1. Recursive Definitions
2. Related Inductive Proofs

1. Recursive Definitions

(a) Define the function $F(n)=2^{n}$ without using exponentiation, instead using recursion.
(b) Program with recursion. And do iterative.
(put in print statements to see operation)
(c) Exercise 105.1.3-b, d ((d) is a "Fibonnaci sequence")
(d) Exercise 105.1.3-c
(Can you "solve" it in "closed form"?)
(e) Define Factorial and program it.
(put in print statements to see operation)
2. Well-defined?
(a) Some examples of yes and no.
(b) Collatz-like functions. Well-defined recursion?
i. Half an even and double an odd.
ii. Half an even and minus 1 from an odd.
iii. The Serious Example: 106.1.2
3. Finding a recurrence
(a) Do Exercise 124.2.3 (Find the recurrence and solve it)
(b) Find a recurrence for $C(n, k)$.
(c) From Wells, do exercise 125.6.9.
4. Inductive Proofs about recursively defined functions
(a) Solve the recurrence from Exercise 124.2.3, and prove it using induction.
(b) Prove $\mathrm{C}(\mathrm{n}, \mathrm{k})$ formula (Thm 125.6) by induction
(c) Do Wells exercise 107.3.12

