CSI 35 LECTURE NOTES (Ojakian)

Topic 6: Mathematical Induction

OUTLINE

(References: Wells 102-104, Rosen 5.1, 5.2)

- 1. Mathematical Induction
- 2. Strong Induction
- 3. Well-Ordering

1. <u>Summation Notation</u>

(a) Compute some examples.

PROBLEM 1. Use the summation notation to write the sum of the positive even integers from 2 up to and including 1000.

2. <u>First Induction Proof</u>

PROBLEM 2. Prove that 1 + 2 + ... + n = n(n+1)/2

- (a) Base Step
- (b) Inductive Step
- (c) Toy example: The infinitely long subway route (show that the subway stops at all the stations).

3. <u>More Inductive Proofs</u>

- (a) Prove that $n^3 n$ is divisible by 3, when n is a positive integer (Section 5.1, Example 8, from Rosen).
- (b) Do exercise 19 from section 5.1 of Rosen, but first true to prove < 2 "directly."
- (c) Prove that a set with n elements has 2^n subsets (Section 5.1, Example 10, from Rosen).
- (d) Let n be a positive integer. Show the every 2^n by 2^n checkerboard with one square removed (anywhere) can be tiled using "right triominoes." (Section 5.1, Example 14, from Rosen)

4. <u>Mistaken Inductive Proofs</u>

(a) Rosen, exercises - 49 and Example 15.

5. Strong Induction

(a) Introduction

PROBLEM 3. Do exercise 1, section 5.2, from Rosen (p. 341).

PROBLEM 4. Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps (Example 4 from Rosen, 5.2, page 337; note: can do with usual induction too).

(b) Mistakes in Strong Induction

PROBLEM 5. Do Rosen, section 5.2, exercise 29 (p. 343).

- (c) Games!
 - i. 2-player, no-chance, zero-sum, perfect information.
 - ii. Theorem: For such games, exactly one player has a winning strategy.
 - iii. Example: Tic-Tac-Toe does not have a winning strategy!
 - iv. The game of Nim. Play it online. Describe winning strategies and give proofs.
 - v. The game of Chomp. Play it online. Winning strategies?
 - A. Describe Strategy-Stealing approach.
 - B. Do Rosen, section 5.2, exercise 15.

6. Well-ordering and why induction works?

- (a) Smallest counter-example for natural numbers. For integers? For reals?
- (b) Consider: Well-ordering principle \Rightarrow Induction Principle.