CSI 35 LECTURE NOTES (Ojakian)

Topic 4: Formal Logic (Review!)

OUTLINE

(References: Wells 11 - 14, 25, 29, 71, 72, 75, 79)

- 1. Predicates
- 2. Propositions
- 3. Quantifiers
- 4. Logical Connectives

1. Predicates and Propositions

- (a) Proposition (our usage! as a "logician")
- (b)

PROBLEM 1. P(m) is the predicate "m|9". Determine if the following are true or false: P(3), P(9), P(6), P(0).

PROBLEM 2. If Q(n) is the predicate " $n^3 < n$ ", find the integers (if any), where the predicate is true.

PROBLEM 3. Find a predicate with one variable with is always false.

2. Universal and Existential Quantifiers

PROBLEM 4. Do Wells Exercise 13.2.7

3. <u>Bringing in Connectives</u> Connectives: AND, OR, NOT, IMPLY, EQUIVALENCE **PROBLEM 5.**

I ROBLEM 5.

- (a) Use a truth table to show that $(P \land Q) \rightarrow P$ is a tautology.
- (b) Use a truth table to show that $(A \to B) \land A \land \neg B$ is a contradiction.

PROBLEM 6. Wells, Exercise 14.2.3

PROBLEM 7. Wells, Exercise 14.2.4 and consider what happens 1) when a universal quantify is put in from, and 2) when an existential quantifier is put in front. Use some programs to test these by creating functions the evaluate the predicate.

PROBLEM 8. Do Wells, Exercise 25.1.4.

PROBLEM 9. Find examples of true implications ("material implication") which seem odd because the antecedent and consequent are not related.

PROBLEM 10. For each proposition, is it True or False (if False, how many counterexamples does it have?)

(a) $\forall n : N \ (n < 2019 \lor n > 2019)$

(b) $\forall n : N \ (n \le 2019 \lor n > 2019)$

PROBLEM 11. Do Wells, Exercise 75.3.4 (p.113)

PROBLEM 12. Do Wells, Exercise 79.1.5 (p. 118)