# CSI 35 LECTURE NOTES (Ojakian) 

## Topic 3: Introduction to Proofs

## OUTLINE

(References: Wells 5)

1. Structured Proofs

## 1. Structured Proofs

PROBLEM 1. Prove that every integer divides itself.
(before trying to prove it, play with examples, and get a feel for the statement)
I will use the expression "Structured Proof" to refer to a proof which is broken down into simple steps, in which the steps are successively numbered (i.e. 1, 2, 3, etc) and for each step a justifications is written down; the justification can be 1) by definition, or 2 ) by given, or 3 ) by a known fact, or 4) by indicating how earlier steps logically imply this step (include the numbers of the steps you use).
In (3) when I say "known fact" I do not mean facts you think are simple about the new definition (ex. you can't just assume things about divisibility). I mean facts from earlier courses (ex. distributivity, basic algebra, facts about integers, etc)

PROBLEM 2. Give a structured proof that every integer divides itself.
PROBLEM 3. Prove that 103 divides itself.
(in the last problem, can use "Universal Instantiation")
2. More Proofs

PROBLEM 4. For each of the following propositions, is it true or false; justify your answers.
(a) Every integer divides 0 .
(b) 0 divides every integer.

PROBLEM 5. Consider two positive integers that divide one another; what can you say about them? Test your hypothesis with a program. Prove it (avoid "existential bigamy"!).

PROBLEM 6. Prove that if $m$ and $n$ are both perfect squares, then $n m$ is also a perfect square.
(we'll need to understand the definition of perfect square to do this problem)
3. Proofs on program correctness
(a) One kind of question: Does the program always terminate?
(b) Second kind of question: Given some initial assertion, verify some final assertion.

PROBLEM 7. Consider the following program:

```
y = 5
if y <= 5:
    z = x + 2*y
else:
    z = x - 2*y
```

Suppose the initial assertion is that $x=3$. Then prove the final assertion that
$z=13$.

PROBLEM 8. Consider the following program:

```
x = 0
for k in range(1, n+1):
    x = x + 2*k
```

Suppose the initial assertion is that $n=100$. Then prove the final assertion that $x=10100$.
PROBLEM 9. Consider the following program:

```
while x < 10000:
    if x % 7 == 0:
        x = x + 1
    else:
        x = x + 3
```

Prove that whatever integer the initial value of $x$ is, the program terminates.

