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PREFACE

This book is designed for a one semester course in discrete mathematics for
sophomore or junior level students. The text covers the mathematical concepts
that students will encounter in many disciplines such as computer science, en-
gineering, Business, and the sciences.
Besides reading the book, students are strongly encouraged to do all the excer-
cises. Mathematics is a discipline in which working the problems is essential to
the understanding of the material contained in this book. Students are encour-
aged first to do the problems without referring to the solutions. Solutions to
problems found at the end of this book can only be used when you are stuck.
Exert a reasonable amount of efforts towards solving a problem before you look
up the answer, and rework any problem you miss.
Students are strongly encouraged to keep up with the exercises and the sequel
of concepts as they are going along, for mathematics builds on itself.

Marcel B. Finan
May 2001
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Chapter 1

Fundamentals of
Mathematical Logic

Logic is commonly known as the science of reasoning. The emphasis here will
be on logic as a working tool. We will develop some of the symbolic techniques
required for computer logic. Some of the reasons to study logic are the following:

• At the hardware level the design of ’logic’ circuits to implement instruc-
tions is greatly simplified by the use of symbolic logic.

• At the software level a knowledge of symbolic logic is helpful in the design
of programs.

1.1 Propositions and Related Concepts

A proposition is any meaningful statement that is either true or false, but not
both. We will use lowercase letters, such as p, q, r, · · · , to represent propositions.
We will also use the notation

p : 1 + 1 = 3

to define p to be the proposition 1 + 1 = 3. The truth value of a proposition
is true, denoted by T, if it is a true statement and false, denoted by F, if it is
a false statement. Statements that are not propositions include questions and
commands.

Exercise 1
Which of the following are propositions? Give the truth value of the proposi-
tions.
a. 2 + 3 = 7.
b. Julius Ceasar was president of the United States.
c. What time is it?

5



6 CHAPTER 1. FUNDAMENTALS OF MATHEMATICAL LOGIC

d. Be quiet !
Solution.
a. A proposition with truth value (F).
b. A proposition wiht truth value (F).
c. Not a proposition since no truth value can be assigned to this statement.
d. Not a proposition.

Exercise 2
Which of the following are propositions? Give the truth value of the proposi-
tions.
a. The difference of two primes.
b. 2 + 2 = 4.
c. Washington D.C. is the capital of New York.
d. How are you?
Solution.
a. Not a proposition.
b. A proposition with truth value (T).
c. A proposition with truth value (F).
d. Not a proposition.

New propositions called compound propositions or propositional func-
tions can be obtained from old ones by using symbolic connectives which
we discuss next. The propositions that form a propositional function are called
the propositional variables.
Let p and q be propositions. The conjunction of p and q, denoted p∧ q, is the
proposition: p and q. This proposition is defined to be true only when both p
and q are true and it is false otherwise. The disjunction of p and q, denoted
p ∨ q, is the proposition: p or q. The ’or’ is used in an inclusive way. This
proposition is false only when both p and q are false, otherwise it is true.

Exercise 3
Let

p : 5 < 9
q : 9 < 7.

Construct the propositions p ∧ q and p ∨ q.
Solution.
The conjunction of the propositions p and q is the proposition

p ∧ q : 5 < 9 and 9 < 7.

The disjunction of the propositions p and q is the proposition

p ∨ q : 5 < 9 or 9 < 7.
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Exercise 4
Consider the following propositions

p : It is Friday.

q : It is raining.

Construct the propositions p ∧ q and p ∨ q.
Solution.
The conjunction of the propositions p and q is the proposition

p ∧ q : It is Friday and it is raining.

The disjunction of the propositions p and q is the proposition

p ∨ q : It is Friday or It is raining.

A truth table displays the relationships between the truth values of proposi-
tions. Next, we display the truth tables of p ∧ q and p ∨ q.

p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

Let p and q be two propositions. The exclusive or of p and q, denoted p⊕ q,
is the proposition that is true when exactly one of p and q is true and is false
otherwise. The truth table of the exclusive ’or’ is displayed below

p q p⊕ q
T T F
T F T
F T T
F F F

Exercise 5
a. Construct a truth table for (p⊕ q)⊕ r.
b. Construct a truth table for p⊕ p.
Solution.
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a.
p q r p⊕ q (p ⊕ q) ⊕ r
T T T F T
T T F F F
T F T T F
T F F T T
F T T T F
F T F T T
F F T F T
F F F F F

b.
p p ⊕ p
T F
F F

The final operation on a proposition p that we discuss is the negation of p.
The negation of p, denoted ∼ p, is the proposition not p. The truth table of ∼ p
is displayed below

p ∼ p
T F
F T

Exercise 6
Consider the following propositions:
p: Today is Thursday.
q: 2 + 1 = 3.
r: There is no pollution in New Jersey.

Construct the truth table of [∼ (p ∧ q)] ∨ r.
Solution.

p q r p ∧q ∼ (p ∧ q) [∼ (p ∧ q)] ∨ r
T T T T F T
T T F T F F
F T T F T T
F T F F T T

Exercise 7
Find the negation of the proposition p : −5 < x ≤ 0.
Solution.
The negation of p is the proposition ∼ p : x > 0 or x ≤ −5

A compound proposition is called a tautology if it is always true, regardless of
the truth values of the basic propositions which comprise it.
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Exercise 8
a. Construct the truth table of the proposition (p∧ q)∨ (∼ p∨ ∼ q). Determine
if this proposition is a tautology.
b. Show that p∨ ∼ p is a tautology.
Solution.
a.

p q ∼ p ∼ q ∼ p∨ ∼ q p ∧ q (p ∧ q) ∨ (∼ p∧ ∼ q)
T T F F F T T
T F F T T F T
F T T F T F T
F F T T T F T

Thus, the given proposition is a tautology.
b.

p ∼ p p∨ ∼ p
T F T
F T T

Again, this proposition is a tautology.

Two propositions are equivalent if they have exactly the same truth values
under all circumstances. We write p ≡ q.

Exercise 9
a. Show that ∼ (p ∨ q) ≡∼ p∧ ∼ q.
b. Show that ∼ (p ∧ q) ≡∼ p∨ ∼ q.
c. Show that ∼ (∼ p) ≡ p.
a. and b. are known as DeMorgan’s laws.
Solution.
a.

p q ∼ p ∼ q p ∨ q ∼ (p ∨ q) ∼ p∧ ∼ q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

b.
p q ∼ p ∼ q p ∧ q ∼ (p ∧ q) ∼ p∨ ∼ q
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

c.
p ∼ p ∼ (∼ p)
T F T
F T F

Exercise 10
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a. Show that p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p.
b. Show that (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) and (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).
c. Show that (p ∧ q) ∨ r ≡ (p ∨ r) ∧ (q ∨ r) and (p ∨ q) ∧ r ≡ (p ∧ r) ∨ (q ∧ r).
Solution.
a.

p q p ∧ q q ∧ p
T T T T
T F F F
F T F F
F F F F

p q p ∨ q q ∨ p
T T T T
T F T T
F T T T
F F F F

b.
p q r p ∨ q q ∨ r (p ∨ q) ∨ r p ∨ (q ∨ r)
T T T T T T T
T T F T T T T
T F T T T T T
T F F T F T T
F T T T T T T
F T F T T T T
F F T F T T T
F F F F F F F

p q r p ∧ q q ∧ r (p ∧ q) ∧ r p ∧ (q ∧ r)
T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F T F F
F T F F F F F
F F T F F F F
F F F F F F F

c.

p q r p ∧ q p ∨ r q ∨ r (p ∧ q) ∨ r (p ∨ r) ∧ (q ∨ r)
T T T T T T T T
T T F T T T T T
T F T F T T T T
T F F F T F F F
F T T F T T T T
F T F F F T F F
F F T F T T T T
F F F F F F F F
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p q r p ∨ q p ∧ r q ∧ r (p ∨ q) ∧ r (p ∧ r) ∨ (q ∧ r)
T T T T T T T T
T T F T F F F F
T F T T T F T T
T F F T F F F F
F T T T F T T T
F T F T F F F F
F F T F F F F F
F F F F F F F F

Exercise 11
Show that ∼ (p ∧ q) 6≡∼ p∧ ∼ q
Solution.
We will use truth tables to prove the claim.

p q ∼ p ∼ q p ∧ q ∼ (p ∧ q) ∼ p∧ ∼ q
T T F F T F F
T F F T F T 6= F
F T T F F T 6= F
F F T T F T T

A compound proposition that has the value F for all possible values of the
propositions in it is called a contradiction.

Exercise 12
Show that the proposition p∧ ∼ p is a contradiction.
Solution.

p ∼ p p∧ ∼ p
T F F
F T F

In propositional functions, the order of operations is that ∼ is performed first.
The operations ∨ and ∧ are executed in any order.

Review Problems

Exercise 13
Indicate which of the following sentences are propositions.
a. 1,024 is the smallest four-digit number that is perfect square.
b. She is a mathematics major.
c. 128 = 26

d. x = 26.
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Exercise 14
Consider the propositions:
p: Juan is a math major.
q: Juan is a computer science major.

Use symbolic connectives to represent the proposition ”Juan is a math ma-
jor but not a computer science major.”

Exercise 15
In the following sentence is the word ”or” used in its inclusive or exclusive
sense? ”A team wins the playoffs if it wins two games in a row or a total of
three games.”

Exercise 16
Write the truth table for the proposition: (p ∨ (∼ p ∨ q))∧ ∼ (q∧ ∼ r).

Exercise 17
Let t be a tautology. Show that p ∨ t ≡ t.

Exercise 18
Let c be a contradiction. Show that p ∨ c ≡ p.

Exercise 19
Show that (r ∨ p) ∧ [(∼ r ∨ (p ∧ q)) ∧ (r ∨ q)] ≡ p ∧ q.

Exercise 20
Use De Morgan’s laws to write the negation for the proposition:”This computer
program has a logical error in the first ten lines or it is being run with an in-
complete data set.”

Exercise 21
Use De Morgan’s laws to write the negation for the proposition:”The dollar is
at an all-time high and the stock market is at a record low.”

Exercise 22
Assume x ∈ IR. Use De Morgan’s laws to write the negation for the proposition:0 ≥
x > −5.

Exercise 23
Show that the proposition s = (p ∧ q) ∨ (∼ p ∨ (p∧ ∼ q)) is a tautology.

Exercise 24
Show that the proposition s = (p∧ ∼ q) ∧ (∼ p ∨ q) is a contradiction.

Exercise 25
a. Find simpler proposition forms that are logically equivalent to p ⊕ p and
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p⊕ (p⊕ p).
b. Is (p⊕ q)⊕ r ≡ p⊕ (q ⊕ r)? Justify your answer.
c. Is (p⊕ q) ∧ r ≡ (p ∧ r)⊕ (q ∧ r)? Justify your answer.

Exercise 26
Show the following:
a. p ∧ t ≡ p, where t is a tautology.
b. p ∧ c ≡ c, where c is a contradiction.
c. ∼ t ≡ c and ∼ c ≡ t.
d. p ∨ p ≡ p and p ∧ p ≡ p.

1.2 Conditional and Biconditional Propositions

Let p and q be propositions. The implication p → q is the the proposition that
is false only when p is true and q is false; otherwise it is true. p is called the
hypothesis and q is called the conclusion. The connective → is called the
conditional connective.

Exercise 27
Construct the truth table of the implication p → q.
Solution.
The truth table is

p q p → q
T T T
T F F
F T T
F F T

Exercise 28
Show that p → q ≡∼ p ∨ q.
Solution.

p q ∼ p p → q ∼ p ∨ q
T T F T T
T F F F F
F T T T T
F F T T T

It follows from the previous exercise that the proposition p → q is always true
if the hypothesis p is false, regardless of the truth value of q. We say that p → q
is true by default or vacuously true.
In terms of words the proposition p → q also reads:
(a) if p then q.
(b) p implies q.
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(c) p is a sufficient condition for q.
(d) q is a necessary condition for p.
(e) p only if q.

Exercise 29
Use the if-then form to rewrite the statement ”I am on time for work if I catch
the 8:05 bus.”
Solution.
If I catch the 8:05 bus then I am on time for work

In propositional functions that invlove the connectives ∼,∧,∨, and → the order
of operations is that ∼ is performed first and → is performed last.

Exercise 30
a. Show that ∼ (p → q) ≡ p∧ ∼ q.
b. Find the negation of the statement ” If my car in the repair shop, then I
cannot go to class.”
Solution.
a. We use De Morgan’s laws as follows.

∼ (p → q) ≡ ∼ (∼ p ∨ q)
≡ ∼ (∼ p)∧ ∼ q
≡ p∧ ∼ q.

b. ”My car in the repair shop and I can get to class.”

The converse of p → q is the proposition q → p. The opposite or inverse
of p → q is the proposition ∼ p →∼ q. The contrapositive of p → q is the
proposition ∼ q →∼ p.

Exercise 31
Find the converse, opposite, and the contrapositive of the implication: ” If to-
day is Thursday, then I have a test today.”
Solution.
The converse: If I have a test today then today is Thursday.
The opposite: If today is not Thursday then I don’t have a test today.
The contrapositive: If I don’t have a test today then today in not Thursday

Exercise 32
Show that p → q ≡∼ q →∼ p.
Solution.
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We use De Morgan’s laws as follows.

p → q ≡ ∼ p ∨ q
≡ ∼ (p∧ ∼ q)
≡ ∼ (∼ q ∧ p)
≡ ∼∼ q∨ ∼ p
≡ q∨ ∼ p
≡ ∼ q →∼ p

Exercise 33
Using truth tables show the following:
a. p → q 6≡ q → p
b. p → q 6≡∼ p →∼ q
Solution.
a. It suffices to show that ∼ p ∨ q 6≡∼ q ∨ p.

p q ∼ p ∼ q ∼ p ∨ q ∼ q ∨ p
T T F F T T
T F F T F 6= T
F T T F T 6= F
F F T T T T

b. We will show that ∼ p ∨ q 6≡ p∨ ∼ q.

p q ∼ p ∼ q ∼ p ∨ q p∨ ∼ q
T T F F T T
T F F T F 6= T
F T T F T 6= F
F F T T T T

Exercise 34
Show that ∼ q →∼ p ≡ p → q
Solution.
We use De Morgan’s laws as follows.

∼ q →∼ p ≡ q∨ ∼ p
≡ ∼ (∼ q ∧ p)
≡ ∼ (p∧ ∼ q)
≡ ∼ p∨ ∼∼ q
≡ ∼ p ∨ q
≡ p → q

The biconditional proposition of p and q, denoted by p ↔ q, is the propo-
sitional function that is true when both p and q have the same truth values and
false if p and q have opposite truth values. Also reads, ”p if and only if q” or
”p is a necessary and sufficient condition for q.”
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Exercise 35
Construct the truth table for p ↔ q.
Solution.

p q p ↔ q
T T T
T F F
F T F
F F T

Exercise 36
Show that the biconditional proposition of p and q is logically equivalent to the
conjunction of the conditional propositions p → q and q → p.
Solution.

p q p → q q → p p ↔ q (p → q) ∧ (q → p)
T T T T T T
T F F T F F
F T T F F F
F F T T T T

The order of operations for the five logical connectives is as follows:

1. ∼
2. ∧,∨ in any order.
3. →,↔ in any order.

Review Problems

Exercise 37
Rewrite the following proposition in if-then form: ” This loop will repeat exactly
N times if it does not contain a stop or a go to.”

Exercise 38
Construct the truth table for the proposition: ∼ p ∨ q → r.

Exercise 39
Construct the truth table for the proposition: (p → r) ↔ (q → r).

Exercise 40
Write negations for each of the following propositions. (Assume that all vari-
ables represent fixed quantities or entities, as appropriate.)

a. If P is a square, then P is a rectangle.
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b. If today is Thanksgiving, then tomorrow is Friday.
c. If r is rational, then the decimal expansion of r is repeating.
d. If n is prime, then n is odd or n is 2.
e. If x ≥ 0, then x > 0 or x = 0.
f. If Tom is Ann’s father, then Jim is her uncle and Sue is her aunt.
g. If n is divisible by 6, then n is divisible by 2 and n is divisible by 3.

Exercise 41
Write the contrapositives for the propositions of Exercise 40.

Exercise 42
Write the converse and inverse for the propositions of Exercise 40.

Exercise 43
Use the contrapositive to rewrite the proposition ” The Cubs will win the penant
only if they win tomorrow’s game” in if-then form in two ways.

Exercise 44
Rewrite the proposition :” Catching the 8:05 bus is sufficient condition for my
being on time for work” in if-then form.

Exercise 45
Use the contrapositive to rewrite the proposition ” being divisible by 3 is a neces-
sary condition for this number to be divisible by 9” in if-then form in two ways.

Exercise 46
Rewrite the proposition ”A sufficient condition for Hal’s team to win the cham-
pionship is that it wins the rest of the games” in if-then form.

Exercise 47
Rewrite the proposition ”A necessary condition for this computer program to
be correct is that it not produce error messages during translation” in if-then
form.

1.3 Rules of Inferential Logic

The main concern of logic is how the truth of some propositions is connected
with the truth of another. Thus, we will usually consider a group of related
propositions.
An argument is a set of two or more propositions related to each other in such
a way that all but one of them (the premises) are supposed to provide support
for the remaining one (the conclusion).
The transition from premises to conclusion is the inference upon which the
argument relies.
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Exercise 48
Show that the propositions ”The star is made of milk, and strawberries are red.
My dog has fleas.” do not form an argument.
Solution.
Indeed, the truth or falsity of each of the propositions has no bearing on that
of the others.

Exercise 49
Show that the propositions:”Mark is a lawyer. So Mark went to law school since
all lawyers have gone to law school” form an argument.
Solution.
This is an argument. The truth of the conclusion, ”Mark went to law school,”
is inferred or deduced from its premises, ”Mark is a lawyer” and ”all lawyers
have gone to law school.”

The above argument can be represented as follows: Let
p: Mark is a lawyer.
q: All lawyers have gone to law school.
r: Mark went to law school.
Then

p ∧ q
.̇. r

The symbol .̇. is to indicate the inferrenced conclusion.

Now, suppose that the premises of an argument are all true. Then the conclu-
sion may be either true or false. When the conclusion is true then the argument
is said to be valid. When the conclusion is false then the argument is said to
be invalid.
To test an argument for validity one proceeds as follows:
(1) Identify the premises and the conclusion of the argument.
(2) Construct a truth table including the premises and the conclusion.
(3) Find rows in which all premises are true.
(4) In each row of Step (3), if the conclusion is true then the argument is valid;
otherwise the argument is invalid.

Exercise 50
Show that the argument

p → q
q → p
.̇. p ∨ q

is invalid
Solution.
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We construct the truth table as follows.

p q p → q q → p p ∨ q
T T T T T
T F F T T
F T T F T
F F T T F

From the last row we see that the premises are true but the conclusion is false.
The argument is then invalid

Exercise 51(Modus Ponens or the method of affirming)
a. Show that the argument

p → q
p
.̇. q

is valid.
b. Show that the argument

∼ p ∨ q → r
∼ p ∨ q

.̇. r

is valid.
Solution.
a. The truth table is as follows.

p q p → q
T T T
T F F
F T T
F F T

The first row shows that the argument is valid.
b. Follows from by replacing p with ∼ ∨q and q with r

Exercise 52
Show that the argument

p → q
q
.̇. p

is invalid.

Solution.
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The truth table is as follows.

p q p → q
T T T
T F F
F T T
F F T

Because of the third row the argument is invalid. An argument of this form is
referred to as converse error because the conclusion of the argument would
follows from the premises if p → q is replaced by its converse q → p

Exercise 53(Modus Tollens or the method of denial)
Show that the argument

p → q
∼ q
.̇. ∼ p

is valid.
Solution.
The truth table is as follows.

p q p → q ∼ q ∼ p
T T T F F
T F F T F
F T T F T
F F T T T

The last row shows that the argument is valid.

Exercise 54
Show that the argument

p → q
∼ p
.̇. ∼ q

is invalid.
Solution.
The truth table is as follows.

p q p → q ∼ q ∼ p
T T T F F
T F F T F
F T T F T
F F T T T

The third row shows that the argument is invalid. This is known as inverse
error because the conclusion of the argument would follow from the premises
if p → q is replaced by the inverse q → p
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Exercise 55(Disjunctive Addition)
a. Show that the argument

p
.̇. p ∨ q

is valid.
b. Show that the argument

q
.̇. p ∨ q

is valid.
Solution.
a. The truth table is as follows.

p q p ∨ q
T T T
T F T
F T T
F F F

The first and second rows show that the argument is valid.
b. The first and third rows show that the argument is valid.

Exercise 56(Conjunctive Simplification)
a. Show that the argument

p ∧ q
.̇. p

is valid.
b. Show that the argument

p ∧ q
.̇. q

is valid.
Solution.
a. The truth table is as follows.

p q p ∧ q
T T T
T F F
F T F
F F F

The first row shows that the argument is valid.
b. The first row shows that the argument is valid.

Exercise 57(Disjunctive Syllogism)
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a. Show that the argument
p ∨ q
∼ q
.̇. p

is valid.
b. Show that the argument

p ∨ q
∼ p
.̇. q

is valid.
Solution.
a. The truth table is as follows.

p q ∼ p ∼ q p ∨ q
T T F F T
T F F T T
F T T F T
F F T T F

The second row shows that the argument is valid.
b. The third row shows that the argument is valid.

Exercise 58(Hypothetical Syllogism)
Show that the argument

p → q
q → r

.̇. p → r

is valid.
Solution.
The truth table is as follows.

p q r p → q q → r p → r
T T T T T T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T

The first , fifth, seventh, and eighth rows show that the argument is valid.

Exercise 59(Rule of contradiction)
Show that if c is a contradiction then the following argument is valid for any p.

∼ p → c
.̇. p
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Solution.
Constructing the truth table we find

c p ∼ p → c
F T T
F F F

The first row shows that the argument is valid

Review Problems

Exercise 60
Use modus ponens or modus tollens to fill in the blanks in the argument below
so as to produce valid inferences.

If
√

2 is rational, then
√

2 = a
b for some integers a and b.

It is not true that
√

2 = a
b for some integers a and b.

.̇.

Exercise 61
Use modus ponens or modus tollens to fill in the blanks in the argument below
so as to produce valid inferences.

If logic is easy, then I am a monkey’s uncle.
I am not a monkey’s uncle.
.̇.

Exercise 62
Use truth table to determine whether the argument below is valid.

p → q
q → p

.̇. p ∨ q

Exercise 63
Use truth table to determine whether the argument below is valid.

p
p → q
∼ q ∨ r

.̇. r
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Exercise 64
Use symbols to write the logical form of the given argument and then use a
truth table to test the argument for validity.

If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.
.̇. Tom is not on team A or Hua is not on team B.

Exercise 65
Use symbols to write the logical form of the given argument. If the argument is
valid, identify the rule of inference that guarantees its validity. Otherwise state
whether the converse or the inverse error is made.

If Jules solved this problem correctly, then Jules obtained the answer 2.
Jules obtained the answer 2.
.̇. Jules solved this problem correctly.

Exercise 66
Use symbols to write the logical form of the given argument. If the argument is
valid, identify the rule of inference that guarantees its validity. Otherwise state
whether the converse or the inverse error is made.

If this number is larger than 2, then its square is larger than 4.
This number is not larger than 2.
.̇. The square of this number is not larger than 4.

Exercise 67
Use the valid argument forms of this section to deduce the conclusion from the
premises.

∼ p ∨ q → r
s∨ ∼ q

∼ t
p → t

∼ p ∧ r →∼ s
.̇. ∼ q

Exercise 68
Use the valid argument forms of this section to deduce the conclusion from the
premises.

∼ p → r∧ ∼ s
t → s

u →∼ p
∼ w

u ∨ w
.̇. ∼ t ∨ w
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1.4 Propositions and Quantifiers

Statements such as ”x > 3” are often found in mathematical assertions and in
computer programs. These statements are not propositions when the variables
are not specified. However, one can produce propositions from such statements.
A predicate is an expression involving one or more variables defined on some
domain, called the domain of discourse. Substitution of a particular value
for the variable(s) produces a proposition which is either true or false. For in-
stance, P (n) : n is prime is a predicate on the natural numbers. Observe that
P (1) is false, P (2) is true. In the expression P (x), x is called a free variable.
As x varies the truth value of P (x) varies as well. The set of true values of a
predicate P (x) is called the truth set and will be denoted by TP .

Exercise 69
Let Q(x, y) : x = y + 3 with domain the collection of natural numbers (i.e. the
numbers 0, 1, 2, · · ·). What are the truth values of the propositions Q(1, 2) and
Q(3, 0)?
Solution.
By substitution in the expression of Q we find: Q(1, 2) is false since 1 = x 6=
y + 3 = 5. On the contrary, Q(3, 0) is true since x = 3 = 0 + 3 = y + 3

If P (x) and Q(x) are two predicates with a common domain D then the nota-
tion P (x) ⇒ Q(x) means that every element in the truth set of P (x) is also an
element in the truth set of Q(x).

Exercise 70
Consider the two predicates P (x) : x is a factor of 4 and Q(x) : x is a factor of
8. Show that P (x) ⇒ Q(x).
Solution.
Finding the truth set of each predicate we have: TP = {1, 2, 4} and TQ =
{1, 2, 4, 8}. Since every number appearing in TP also appears in TQ then P (x) ⇒
Q(x)

If two predicates P (x) and Q(x) with a common domain D are such that
TP = TQ then we use the notation P (x) ⇔ Q(x).

Exercise 71
Let D = IR. Consider the two predicates P (x) : −2 ≤ x ≤ 2 and Q(x) : |x| ≤ 2.
Show that P (x) ⇔ Q(x).
Solution.
Indeed, if x in TP then the distance from x to the origin is at most 2. That is,
|x| ≤ 2 and hence x belongs to TQ. Now, if x is an element in TQ then |x| ≤ 2,i.e.
(x − 2)(x + 2) ≤ 0. Solving this inequality we find that −2 ≤ x ≤ 2. That is,
x ∈ TP

Another way to generate propositions is by means of quantifiers. For ex-
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ample ∀x ∈ D, P (x) is a proposition which is true if P (x) is true for all values
of x in the domain D of P. For example, if k is an nonnegative integer, then the
predicate P (k) : 2k is even is true for all k ∈ IN. We write,

∀k ∈ IN, (2k is even).

The symbol ∀ is called the universal quantifier.

The proposition ∀x ∈ D, P (x) is false if P (x) is false for at least one value
of x. In this case x is called a counterexample.

Exercise 72
Show that the proposition ∀x ∈ IR, x > 1

x is false.
Solution.
A counterexample is x = 1

2 . Clearly, 1
2 < 2 = 1

1
2
.

Exercise 73
Write in the form ∀x ∈ D,P (x) the proposition :” every real number is either
positive, negative or 0.”
Solution.
∀x ∈ IR, x > 0, x < 0, or x = 0.

The notation ∃x ∈ D, P (x) is a proposition that is true if there is at least
one value of x ∈ D where P (x) is true; otherwise it is false. The symbol ∃ is
called the existential quantifier.

Exercise 74
Let P (x) denote the statement ”x > 3.” What is the truth value of the propo-
sition ∃x ∈ IR, P (x).
Solution.
Since 4 ∈ IR and 4 > 3 then the given proposition is true.

The proposition ∀x ∈ D, P (x) → Q(x) is called the universal conditional
proposition. For example, the proposition ∀x ∈ IR, if x > 2 then x2 > 4 is a
universal conditional proposition.

Exercise 75
Rewrite the proposition ”if a real number is an integer then it is a rational
number” as a universal conditional proposition.
Solution.
∀x ∈ IR, if x is an interger then x is a rational number

Exercise 76
a. What is the negation of the proposition ∀x ∈ D, P (x)?
b. What is the negation of the proposition ∃x ∈ D, P (x)?
c. What is the negation of the proposition ∀x ∈ D,P (x) → Q(x)?
Solution.
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a. ∃x ∈ D,∼ P (x).
b. ∀x ∈ D,∼ P (x).
c. Since P (x) → Q(x) ≡ (∼ P (x)) ∨ Q(x) then ∼ (∀x ∈ D, P (x) → Q(x)) ≡
∃x ∈ D, P (x) and ∼ Q(x)

Exercise 77
Consider the universal conditional proposition

∀x ∈ D, if P (x) then Q(x).

a. Find the contrapositive.
b. Find the converse.
c. Find the inverse.
Solution.
a. ∀x ∈ D, if ∼ Q(x) then ∼ P (x).
b. ∀x ∈ D, if Q(x) then P (x).
c. ∀x ∈ D, if ∼ P (x) then ∼ Q(x).

Exercise 78
Write the negation of each of the following propositions:

a. ∀x ∈ IR, x > 3 → x2 > 9.
b. Every polynomial function is continuous.
c. There exists a triangle with the property that the sum of angles is greater
than 180◦.
Solution.
a. ∃x ∈ IR, x > 3 and x2 ≤ 9.
b. There exists a polynomial that is not continuous everywhere.
c. For any triangle, the sum of the angles is less than or equal to 180◦.

Next we discuss predicates that contain multiple quantifiers. A typical example
is the definition of a limit. We say that L = limx→a f(x) if and only if ∀ε > 0,∃
a positive number δ such that if |x− a| ≤ δ then |f(x)− L| < ε.

Exercise 79
a. Let P (x, y) denote the statement ”x + y = y + x.” What is the truth value
of the proposition (∀x ∈ IR)(∀y ∈ IR), P (x, y)?
b. Let Q(x, y) denote the statement ”x+y = 0.” What is the truth value of the
proposition (∃y ∈ IR)(∀x ∈ IR), Q(x, y)?
Solution.
a. The given proposition is always true.
b. The proposition is false. For otherwise, one can choose x 6= −y to obtain
0 6= x + y = 0 which is impossible

Exercise 80
Find the negation of the following propositions:
a. ∀x∃y, P (x, y).
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b. ∃x∀y, P (x, y).

Solution.
a. ∃x∀y,∼ P (x, y).
b. ∀x∃y,∼ P (x, y)

Exercise 81
The symbol ∃! stands for the phrase ”there exists a unique”. Which of the
following statements are true and which are false.

a. ∃!x ∈ IR, ∀y ∈ IR, xy = y.
b. ∃! integer x such that 1

x is an integer.
Solution.
a. True. Let x = 1.
b. False since 1 and −1 are both integers with integer reciprocals

Review Problems

Exercise 82
By finding a counterexample, show that the proposition:” For all positive inte-
gers n and m, m.n ≥ m + n” is false.

Exercise 83
Consider the statement

∃x ∈ IR such that x2 = 2.

Which of the following are equivalent ways of expressing this statement?
a. The square of each real number is 2.
b. Some real numbers have square 2.
c. The number x has square 2, for some real number x.
d. If x is a real number, then x2 = 2.
e. Some real number has square 2.
f. There is at least one real number whose square is 2.

Exercise 84
Rewrite the following propositions informally in at least two different ways with-
out using the symbols ∃ and ∀ :

a. ∀ squares x, x is a rectangle.
b. ∃ a set A such that A has 16 subsets.

Exercise 85
Rewrite each of the following statements in the form ”∃ x such that ”:

a. Some exercises have answers.
b. Some real numbers are rational.
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Exercise 86
Rewrite each of the following statements in the form ”∀ , if then .”:

a. All COBOL programs have at least 20 lines.
b. Any valid argument with true premises has a true conclusion.
c. The sum of any two even integers is even.
d. The product of any two odd integers is odd.

Exercise 87
Which of the following is a negation for ”Every polynomial function is continu-
ous”?

a. No polynomial function is continuous.
b. Some polynomial functions are continuous.
c. Every polynomial function fails to be continuous.
d. There is a noncontinuous polynomial function.

Exercise 88
Determine whether the proposed negation is correct. If it is not, write a correct
negation.

Proposition : For all integers n, if n2 is even then n is even.
Proposed negation : For all integer n, if n2 is even then n is not even.

Exercise 89
Let D = {−48,−14,−8, 0, 1, 3, 16, 23, 26, 32, 36}. Determine which of the fol-
lowing propositions are true and which are false. Provide counterexamples for
those propositions that are false.

a. ∀x ∈ D, if x is odd then x > 0.
b. ∀x ∈ D, if x is less than 0 then x is even.
c. ∀x ∈ D, if x is even then x ≤ 0.
d. ∀x ∈ D, if the ones digit of x is 2, then the tens digit is 3 or 4.
e. ∀x ∈ D, if the ones digit of x is 6, then the tens digit is 1 or 2

Exercise 90
Write the negation of the proposition :∀x ∈ IR, if x(x + 1) > 0 then x > 0 or
x < −1.

Exercise 91
Write the negation of the proposition : If an integer is divisible by 2, then it is
even.

Exercise 92
Given the following true propostion:” ∀ real numbers x, ∃ an integer n such that
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n > x.” For each x given below, find an n to make the predicate n > x true.
a. x = 15.83 b. x = 108 c. x = 101010

.

Exercise 93

Given the proposition: ∀x ∈ IR, ∃ a real number y such that x + y = 0.
a. Rewrite this proposition in English without the use of the quantifiers.
b. Find the negation of the given proposition.

Exercise 94
Given the proposition: ∃x ∈ IR, ∀y ∈ IR, x + y = 0.
a. Rewrite this proposition in English without the use of the quantifiers.
b. Find the negation of the given proposition.

Exercise 95
Consider the proposition ”Somebody is older than everybody.” Rewrite this
proposition in the form ”∃ a person x such that ∀ .”

Exercise 96
Given the proposition: There exists a program that gives the correct answer to
every question that is posed to it.”
a. Rewrite this proposition using quantifiers and variables.
b. Find a negation for the given proposition.

Exercise 97
Given the proposition: ∀x ∈ IR, ∃y ∈ IR such that x < y.
a. Write a proposition by interchanging the symbols ∀ and ∃.
b. State which is true: the given proposition, the one in part (a), neither, or
both.

Exercise 98
Find the contrapositive, converse, and inverse of the proposition ”∀x ∈ IR, if
x(x + 1) > 0 then x > 0 or x < −1.”

Exercise 99
Rewrite the following proposition in if-then form :” Earning a grade of C− in
this course is a sufficient condition for it to count toward graduation.”

Exercise 100
Rewrite the following proposition in if-then form :” Being on time each day is
a necessary condition for keeping this job.”

Exercise 101
Rewrite the following proposition without using the words ”necessary” or ”
sufficient” : ”Divisibility by 4 is not a necessary condition for divisibility by 2.”



1.5. ARGUMENTS WITH QUANTIFIED PREMISES 31

1.5 Arguments with Quantified Premises

In this section we discuss three types of valid arguments that involve the uni-
versal quantifier.

• The rule of universal instantiation:

∀x ∈ D, P (x)
a ∈ D

.̇. P (a)

Exercise 102
Use universal instantiation to fill in valid conclusion for the following argument.

All positive integers are greater than or equal to 1
3 is a positive integer
.̇.
Solution.
All positive integers are greater than or equal to 1
3 is a positive integer
.̇. 3 ≥ 1

• Universal Modus Ponen:

∀x ∈ D, if P (x) then Q(x)
P (a) for some a ∈ D

.̇. Q(a)

Exercise 103

Use the rule of the universal modus ponens to fill in valid conclusion for the
following argument.

∀n ∈ IN, if n = 2k for some k ∈ IN then n is even.
0 = 2.0
.̇.
Solution.
∀n ∈ IN, if n = 2k for some k ∈ IN then n is even.
0 = 2.0
.̇.0 is even

• Universal Modus Tollens:

∀x ∈ D, if P (x) then Q(x)
∼ Q(a) for some a ∈ D

.̇. ∼ P (a)

Exercise 104
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Use the rule of the universal modus tonens to fill in valid conclusion for the
following argument.

All healthy people eat an apple a day.
Harry does not eat an apple a day.
.̇.
Solution.
All healthy people eat an apple a day.
Harry does not eat an apple a day.
.̇. Harry is not healthy

Next we discuss a couple of invalid arguments whose premises involve quan-
tifiers.

• The rule of converse error:

∀x ∈ D, if P (x) then Q(x)
Q(a) for some a ∈ D

.̇. P (a)

Exercise 105

What kind of error does the following invalid argument exhibit?

All healthy people eat an apple a day.
Helen eats an apple a day.
.̇. Helen is healthy
Solution.
This invalid argument exhibits the converse error

• The rule of inverse error:

∀x ∈ D, if P (x) then Q(x)
∼ P (a) for some a ∈ D

.̇. ∼ Q(a)

Exercise 106

What kind of error does the following invalid argument exhibit?

All healthy people eat an apple a day.
Hubert is not a healthy person.
.̇. Hubert does not eat an apple a day.
Solution.
This invalid argument exhibits the inverse error
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Review Problems

Exercise 107

Use the rule of universal modus ponens to fill in valid conclusion for the ar-
gument.

For all real numbers a, b, c, and d, if b 6= 0 and d 6= 0 then a
b + c

d = ad+bc
bd .

a = 2, b = 3, c = 4, and d = 5 are particular real numbers such that b 6= 0 and
d 6= 0.
.̇.

Exercise 108

Use the rule of universal modus tonens to fill in valid conclusion for the ar-
gument.

If a computer is correct, then compilation of the program does not produce
error messages.
Compilation of this program produces error messages.
.̇.

Exercise 109

Use the rule of universal modus ponens to fill in valid conclusion for the ar-
gument.

All freshmen must take writing.
Caroline is a freshman.
.̇. .

Exercise 110

What kind of error does the following invalid argument exhibit?
All cheaters sit in the back row.
George sits in the back row.
.̇. George is a cheater.

Exercise 111

What kind of error does the following invalid argument exhibit?
All honest people pay their taxes.
Darth is not honest.
.̇. Darth does not pay his taxes.
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1.6 Project I: Digital Logic Design

In this section we discuss the logic of digital circuits which are considered to
be the basic components of most digital systems, such as electronic computers,
electronic phones, traffic light controls, etc.
The purpose of digital systems is to manipulate discrete information which are
represented by physical quantities such as voltages and current. The smallest
representation unit is one bit, short for binary digit. Since electronic switches
have two physical states, namely high voltage and low voltage we attribute the
bit 1 to high voltage and the bit 0 for low voltage.
A logic gate is the smallest processing unit in a digital system. It takes one or
few bits as input and generates one bit as an output.
A circuit is composed of a number of logic gates connected by wires. It takes
a group of bits as input and generates one or more bits as output.
The six basic logic gates are the following:

(1) NOT gate (also called inverter): Takes an input of 0 to an output of 1
and an input of 1 to an output of 0. The corresponding logical symbol is ∼ P.
(2) AND gate: Takes two bits, P and Q, and outputs 1 if P and Q are 1 and 0
otherwise. The logical symbol is P ∧Q.
(3) OR gate: outputs 1 if either P or Q is 1 and 0 otherwise. The logical symbol
is P ∨Q.
(4) NAND gate: outputs a 0 if both P and Q are 1 and 1 otherwise. The symbol
is ∼ (P ∧Q). Also, denoted by P |Q, where | is called a Scheffer stroke.
(5) NOR gate: output a 0 if at least one of P or Q is 1 and 1 otherwise. The
symbol is ∼ (P ∨Q) or P ↓ Q, where ↓ is a Pierce arrow

The logic gates have the following graphical representations:

P R
P
Q R

P
Q

P
QR R

P

Q
R

NOT                         AND

    OR                                NAND

NOR
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Exercise 112
Construct the truth tables of the gates discussed in this section.

If you are given a set of input signals for a circuit, you can find its output
by tracing through the circuit gate by gate.

Exercise 113
Give the output signal S for the following circuit, given that P = 0, Q = 1, and
R = 0 :

S

P
Q

R

Exercise 114
Write the input/output table for the circuit of the previous exercise.

A variable with exactly two possible values is called a Boolean variable. A
Boolean expression is an expression composed of Boolean variables and con-
nectives (which are the gates in this section).

Exercise 115
Find the Boolean expression that corresponds to the circuit of Exercise 113.

Exercise 116
Construct the circuit corresponding to the Boolean expression: (P ∧Q)∨ ∼ R.

Exercise 117
For the following input/output table, construct (a) the corresponding Boolean
expression and (b) the corresponding circuit:
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P Q R S
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Two digital logic circuits are equivalent if, and only if, their corresponding
Boolean expressions are logically equivalent.

Exercise 118
Show that the following two circuits are equivalent:

Q

a.

b.

Q

P

 P

Exercise 119
Consider the following circuit

P
Q

R

S

Let P and Q be single binary digits and P + Q = RS. Complete the following
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table
P Q R S
1 1
1 0
0 1
0 0

The given circuit is called a half -adder. It computes the sum of two single
binary digits.

Several methods have been used for expressing negative numbers in the com-
puter. The most obvious way is to convert the number to binary and stick on
another bit to indicate sign, 0 for positive and 1 for negative. Suppose that
integers are stored using this signed-magnitude technique in 8 bits so that the
leftmost bit holds the sign while the remaining bits represent the magnitude.
Thus, +4110 = 00101001 and −4110 = 10101001.
The above procedure has a gap. How one would represent the bit 0? Well,
there are two ways for storing 0. One way is 00000000 which represents +0
and a second way 10000000 represents −0. A method for representing numbers
that avoid this problem is called the two’s complement. Considering −4110

again, first, convert the absolute value to binary obtaining 4110 = 00101001.
Then take the complement of each bit obtaining 11010110. This is called the
one complement of 41. To complete the procedure, increment by 1 the one’s
complement to obtain −4110 = 11010111.
Conversion of +4110 to two’s complement consists merely of expressing the num-
ber in binary, i.e. +4110 = 00101001.

Exercise 120
Express the numbers 104 and −104 in two’s complement representation with 8
bits.

Now, an algorithm to find the decimal representation of the integer with a
given 8-bit two’s complement is the following:
1. Find the two’s complement of the given two’s complement,
2. write the decimal equivalent of the result.

Exercise 121
What is the decimal representation for the integer with two’s complement 10101001?

1.7 Project II: Number Systems

In this section we consider three number systems that are of importance in
applications, namely, the decimal system, the binary system, and the hexadeci-
mal system. Decimal numbers are used in communication among human beings
whereas binary numbers are used by computers to represent numbers.
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Consider first the decimal system. If n is a positive integer then n can be
written as

n = dkdk−1 · · · d1d0,

where the digits d0, d1, · · · , dk are elements of the set {0, 1, 2, · · · , 9}.

The number n can be expressed as a sum of powers of 10 as follows:

n = dk10k + dk−110k−1 + · · ·+ d1101 + d0100.

For example,
5049 = 5(103) + 0(102) + 4(101) + 9(100).

A number in binary system is a number n that can be written in the form

n = bkbk−1 · · · b1b0,

where bi is either 0 or 1.

We will use subscript to tell the base of which a number is represented. Thus,
we write n2 = bkbk−1 · · · b1b0 to indicate that the number n is in base 2.
If n is a number in base 2 then its decimal value (i.e. base 10) is found by the
formula:

n2 = bk(2k) + bk−1(2k−1) + · · ·+ b1(21) + b0(20) = m10.

Exercise 122
Find the decimal value of the following binary numbers:
a. 11001012

b. 1101102

To convert a positive integer n from base 10 to base 2 we use the division
algorithm as follows:
(1) n = q0(2) + r0, where q0 is the quotient of the division of n by 2 and r0 is
the remainder.
(2) If q0 = 0 then n is already in base 2. If not then divide q0 by 2 to obtain
q0 = q1(2) + r1.
(3) If q1 = 0 then n10 = r1r0. If not repeat the process. Note that the remain-
ders are all less than 2.
Suppose that qk = 0 then

n10 = rkrk−1 · · · r1r0.

Exercise 123
Represent the following decimal integers in binary notation:
a. 129710

b. 45810
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Exercise 124
Evaluate the following sums:
a. 110111012 + 10010110102

b. 1011012 + 111012

Another useful number system is the hexadecimal system. The possible
digits in an hexadecimal system are :

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,C, D, E, F

where A,B, C, D, E, F stand for 10, 11, 12, 13, 14, and 15 respectively.
The conversion of a number from base 16 to base 10 is similar to the conversion
of numbers from base 2 to base 10. The conversion of a number from base 10
to base 16 is similar to the conversion of a decimal number to base 2.

Exercise 125
Convert the number A2BC16 to base 10.

To convert an integer from base 16 to base 2 one performs the following:
(1) Write each hexadecimal digit of the integer in fixed 4-bit binary notation.
(2) Juxtapose the results.

Exercise 126
Convert the number B53DF816 to base 2.

To convert an integer from base 2 to base 16:
(1) Group the digits of the binary number into sets of four bits, starting from
the right and adding leading zeros as needed.
(2) Convert the binary numbers in (1) to base 16.
(3) Juxtapose the results of (2)

Exercise 127
Convert the number 1011011110001012 to base 16.
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Chapter 2

Fundamentals of
Mathematical Proofs

In this chapter we discuss some common methods of proof and the standard
terminology that accompanies them.

2.1 Methods of Direct Proof I

A mathematical system consists of axioms, definitions, and undefined terms.
An axiom is a statement that is assumed to be true. A definition is used to
create new concepts in terms of existing ones. A theorem is a proposition that
has been proved to be true. A lemma is a theorem that is usually not interesting
in its own right but is useful in proving another theorem. A corollary is a
theorem that follows quickly from a theorem.
Example.
The Euclidean geometry furnishes an example of mathematical system:
• points and lines are examples of undefined terms.
• An example of a definition: Two angles are supplementary if the sum of their
measures is 180◦.
• An example of an axiom: Given two distinct points, there is exactly one line
that contains them.
• An example of a theorem: If two sides of a triangle are equal, then the angles
opposite them are equal.
• An example of a corollary: If a triangle is equilateral, then it is equiangular.

An argument that establishes the truth of a theorem is called a proof. Logic
is a tool for the analysis of proofs.

First we discuss methods for proving a theorem of the form ”∃x such that
P (x).” This theorem guarantees the existence of at least one x for which the
predicate P (x) is true. The proof of such a theorem is constructive: that is,

41



42 CHAPTER 2. FUNDAMENTALS OF MATHEMATICAL PROOFS

the proof is either by finding a particular x that makes P (x) true or by exhibit-
ing an algorithm for finding x.

Exercise 128
Show that there exists a positive integer which can be written as the sum of the
squares of two numbers.
Solution.
Indeed, one example is 52 = 32 + 42.

Exercise 129
Show that there exists an integer x such that x2 = 15, 129.
Solution.
Applying the well-known algorithm of extracting the square root we find that
x = 123

By a nonconstructive existence proof we mean a method that involves
either showing the existence of x using a proved theorem (or axioms) or the
assumption that there is no such x leads to a contradiction. The disadvantage
of nonconstructive method is that it may give virtually no clue about where or
how to find x.

Theorems are often of the form ”∀x ∈ D if P (x) then Q(x).” We call P (x)
the hypothesis and Q(x) the conclusion.

Let us first consider a proposition of the form ∀x ∈ D,P (x). Then this can
be written in the form ”∀x, if x ∈ D then P (x).” If D is a finite set, then one
check the truth value of P (x) for each x ∈ D. This method is called the method
of exhaustion.

Exercise 130
Show that for each integer 1 ≤ n ≤ 10, n2 − n + 11 is a prime number.
Solution.
The given proposition can be written in the form ”∀n ∈ IN, if 1 ≤ n ≤ 10 then
P (n)” where P (n) = n2 − n + 11. Using the method of exhaustion we see that

P (1) = 11 ; P (2) = 13 ; P (3) = 17 ; P (4) = 23
P (5) = 31 ; P (6) = 41 ; P (7) = 53 ; P (8) = 67
P (9) = 83 ; P (10) = 101.

The most powerful technique for proving a universal proposition is one that
works regardless of the size of the domain over which the proposition is quanti-
fied. It is called the method of generalizing from the generic particular.
The method consists of picking an arbitrary element x of the domain (known as
a generic element) for which the hypothesis P (x) is satisfied, and then using
definitions, previously established results, and the rules of inference to conclude
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that Q(x) is also true.
By a direct method of proof we mean a method that consists of showing
that if P (x) is true for x ∈ D then Q(x) is also true.

The following shows the format of the proof of a theorem.

Theorem 1
For all n, m ∈ ZZ, if m and n are even then so is m + n.

Proof.
Let m and n be two even integers. Then there exist integers k1 and k2 such
that n = 2k1 and m = 2k2. We must show that m+n is even, that is, an integer
multiple of 2. Indeed,

m + n = 2k1 + 2k2

= 2(k1 + k2)
= 2k

where k = k1 + k2 ∈ ZZ. Thus, by the definition of even, m + n is even

Exercise 131
Prove the following theorem.

Theorem Every integer is a rational number.
Solution.
Proof. Let n be an arbitrary integer. Then n = n

1 . By the definition of rational
numbers, n is rational

Theorem 2
If a, b ∈ IQ then a + b ∈ IQ.

Proof.
Let a and b be two rational numbers. Then there exist integers a1, a2, b1 6= 0,
and b2 6= 0 such that a = a1

b1
and b = a2

b2
. By the property of addition of two

fractions we have
a + b = a1

b1
+ a2

b2

= a1b2+a2b1
b1b2

By letting p = a1b2 + a2b1 ∈ ZZ and q = b1b2 ∈ ZZ∗ we get a + b = p
q . That is,

a + b ∈ IQ

Corollary 1 The double of a rational number is rational.

Proof.
Let a = b in the previous theorem we see that 2a = a + a = a + b ∈ IQ

Next, we point out of some common mistakes that must be avoided in prov-
ing theorems.
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• Arguing from examples. The validity of a general statement can not be proved
by just using a particular example.

• Using the same letters to mean two different things. For example, suppose
that m and n are any two given even integers. Then by writing m = 2k and
n = 2k this would imply that m = n which is inconsistent with the statement
that m and n are arbitrary.

• Jumping to a conclusion. Let us illustrate by an example. Suppose that
we want to show that if the sum of two integers is even so is their difference.
Consider the following proof: Suppose that m + n is even. Then there is an
integer k such that m + n = 2k. Then, m = 2k − n and so m− n is even.
The problem with this proof is that the crucial step m−n = 2k−n−n = 2(k−n)
is missing. The author of the proof has jumped prematurely to a conclusion.

• Begging the question. By that we mean that the author of a proof uses
in his argument a fact that he is supposed to prove.

Finally, to show that a proposition of the form ∀x ∈ D, if P (x) then Q(x)
is false it suffices to find an element x ∈ D where P (x) is true but Q(x) is false.
Such an x is called a counterexample.

Exercise 132
Disprove the proposition ∀a, b ∈ IR, if a < b then a2 < b2.
Solution.
A counterexample is the following. Let a = −2 and b = −1. Then a < b but
a2 > b2

Review Problems
A real number r is called rational if there exist two integers a and b 6= 0 such
that r = a

b . A real number that is not rational is called irrational.

Exercise 133
Show that the number r = 6.321521521... is a rational number.

Exercise 134
Prove the following theorem.

Theorem. The product of two rational numbers is a rational number.

Exercise 135
Use the previous exercise to prove the following.

Corollary. The square of any rational number is rational.

Exercise 136
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Use the method of constructive proof to show that if r and s are two real num-
bers then there exists a real number x such that r < x < s.

Exercise 137
The following Pascal program segment does not find the minimum value in a
data set of N integers. Find a counterexample.

MINN := 0;
FOR I := 1 TO N DO

BEGIN
READLN (A);
If A < MINN THEN MINN := A

END

2.2 More Methods of Proof

A vacuous proof is a proof of an implication p → q in which it is shown that
p is false.

Exercise 138
Use the method of vacuous proof to show that if x ∈ ∅ then David is playing
pool.
Solution.
Since the proposition x ∈ ∅ is always false then the given proposition is vacu-
ously true

A trivial proof of an implication p → q is one in which q is shown to be
true without any reference to p.

Exercise 139
Use the method of trivial proof to show that if n is an even integer then n is
divisible by 1.
Solution.
Since the proposition n is divisible by 1 is always true then the given implication
is trivially true

The method of proof by cases is a direct method of proving the conditional
proposition p1∨p2∨· · ·∨pn → q. The method consists of proving the conditional
propositions p1 → q, p2 → q, · · · , pn → q.
Exercise 140
Show that if n is a positive integer then n3 + n is even.
Solution.
We use the method of proof by cases.

Case 1. Suppose that n is even. Then there is k ∈ IN such that n = 2k.
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In this case, n3 + n = 8k3 + 2k = 2(4k3 + k) which is even.

Case 2. Suppose that n is odd. Then there is a k ∈ IN such that n = 2k + 1.
So, n3 + n = 2(4k3 + 6k2 + 4k + 1) which is even

Exercise 141
Use the proof by cases to prove the triangle inequality: |x + y| ≤ |x|+ |y|.
Solution.
Case 1. x ≥ 0 and y ≥ 0. Then x + y ≥ 0 and so |x + y| = x + y = |x|+ |y|.
Case 2. x ≥ 0 and y < 0. Then x + y < x + 0 < |x| ≤ |x| + |y|. On the other
hand, −(x+y) = −x+(−y) ≤ 0+(−y) = |y| ≤ |x|+ |y|. Thus, if |x+y| = x+y
then |x + y| < |x|+ |y| and if |x + y| = −(x + y) then |x + y| ≤ |x|+ |y|.
Case 3. The case x < 0 and y ≥ 0 is similar to case 2.
Case 4. Suppose x < 0 and y < 0. Then x + y < 0 and therefore |x + y| =
−(x + y) = (−x) + (−y) = |x|+ |y|.
So in all four cases |x + y| ≤ |x|+ |y|.

Now, given a real number x. The largest integer n such that n ≤ x < n + 1 is
called the floor of x and is denoted by bxc. The smallest integer n such that
n− 1 < x ≤ n is called the ceiling of x and is denoted by dxe.

Exercise 142
Compute bxc and dxe of the following values of x :
a. 37.999 b. − 57

2 c. −14.001
Solution.
a. b37.999c = 37, d37.999e = 38.
b. b− 57

2 c = −29, d− 57
2 e = −28.

c. b−14.001c = −15, d−14.001e = −14.

Exercise 143
Use the proof by a counterexample to show that the proposition ”∀x, y ∈
IR, bx + yc = bxc+ byc” is false.
Solution.
Let x = y = 0.5. Then bx + yc = 1 and bxc+ byc = 0

The following gives another example of the method of proof by cases.

Theorem 3
For any integer n,

bn
2
c =

{
n
2 , if n is even

n−1
2 , if n is odd

Proof.
Let n be any integer. Then we consider the following two cases.

Case 1. n is odd. In this case, there is an integer k such that n = 2k + 1.
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Hence,

bn
2
c = b2k + 1

2
c = bk +

1
2
c = k

since k ≤ k + 1
2 < k + 1. Since n = 2k + 1 then solving this equation for k we

find k = n−1
2 . It follows that

bn
2
c = k =

n− 1
2

.

Case 2. Suppose n is even. Then there is an integer k such that n = 2k. Hence,
bn

2 c = bkc = k = n
2 .

Review Problems

Exercise 144
Prove that for any integer n the product n(n + 1) is even.

Exercise 145
Prove that the square of any integer has the form 4k or 4k+1 for some integer k

Exercise 146
Prove that for any integer n, n(n2 − 1)(n + 2) is divisible by 4.

Theorem 4
Given any nonnegative integer n and a positive integer d there exist integers q
and r such that n = dq + r and 0 ≤ r < d. The number q is called the quotient
of the division of n by d and we write q = n div d. The number r is called the
remainder and we write r = n mod d or n ≡ r(mod d).

Proof.
The proof uses the fact that any nonempty subset of IN has a smallest element.
So let S = {n − d · k ∈ IN : k ∈ ZZ}. This set is nonempty. Indeed, if n ∈ IN
then n = n− 0 · d ≥ 0 and if n < 0 then n− d · n = n · (1− d) ≥ 0. Thus, S is
a nonempty subset of IN so it has a smallest elements, called r. That is, there
is an integer q such that n− d · q = r or n = d · q + r. It remains to show that
r < d. Suppose the contrary, i.e. r ≥ d. Then n− d · (q + 1) = r− d ≥ 0 so that
n−d·(q+1) ∈ S. Hence, r ≤ n−d·(q+1) = r−d, a contradiction. Hence, r < d

The following theorem shows a way for finding q and r.

Theorem 5
If n is a nonnegative integer and d is a positive integer by letting q = bn

d c and
r = n− dbn

d c, we have

n = dq + r, and 0 ≤ r < d.
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Proof.
Suppose n is a nonnegative integer, d is a positive integer,q = bn

d c and r =
n− dbn

d c. By substitution we have

dq + r = dbn
d
c+ n− dbn

d
c = n.

It remains to show that 0 ≤ r < d. By the definition of the floor function we
have

q ≤ n

d
< q + 1.

Multiplying through by d we find

dq ≤ n < dq + d.

This implies that
0 ≤ n− dq < d.

But
r = n− dbn

d
c = n− dq.

Hence, 0 ≤ r < d. This completes a proof of the theorem

Exercise 147
State a necessary and sufficient condition for the floor function of a real number
to equal that number

Exercise 148
Prove that if n is an even integer then bn

2 c = n
2 .

Exercise 149
Show that the equality bx − yc = bxc − byc is not valid for all real numbers x
and y.

Exercise 150
Show that the equality dx + ye = dxe + dye is not valid for all real numbers x
and y.

Exercise 151
Prove that for all real numbers x and all integers m, dx + me = dxe+ m.

Exercise 152
Show that if n is an odd integer then dn

2 e = n+1
2 .

2.3 Methods of Indirect Proofs: Contradiction
and Contraposition

Recall that in a direct proof one starts with the hypothesis of an implication
p → q and then prove that the conclusion is true. Any other method of proof
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will be referred to as an indirect proof. In this section we study two methods of
indirect proofs, namely, the proof by contradiction and the proof by contrapos-
itive.

• Proof by contradiction: We want to show that p is true. we assume it
is not and therefore ∼ p is true and then derive a contradiction. By the rule of
contradiction discussed in Chapter 1, p must be true.

Theorem 6
If n2 is an even integer so is n.

Proof.
Suppose the contrary. That is suppose that n is odd. Then there is an integer
k such that n = 2k + 1. In this case, n2 = 2(2k2 + 2k) + 1 is odd and this
contradicts the assumption that n2 is even. Hence, n must be even

Theorem 7
The number

√
2 is irrational.

Proof.
Suppose not. That is, suppose that

√
2 is rational. Then there exist two integers

m and n with no common divisors such that
√

2 = m
n . Squaring both sides of

this equality we find that 2n2 = m2. Thus, m2 is even. By Theorem 6, m is
even. That is, 2 divides m. But then m = 2k for some integer k. Taking the
square we find that 2n2 = m2 = 4k2, that is n2 = 2k2. This says that n2 is even
and by Theorem 6, n is even. We conclude that 2 divides both m and n and
this contradcits our assumption that m and n have no common divisors. Hence,√

2 must be irrational

Theorem 8
The set of prime numbers is infinite.

Proof.
Suppose not. That is, suppose that the set of prime numbers is finite. Then
these prime numbers can be listed, say, p1, p2, · · · , pn. Now, consider the integer
N = p1p2 · · · pn + 1. By the Unique Factorization Theorem, ( See Exercise ??)
N can be factored into primes. Thus, there is a prime number pi such that
pi|N. But since pi|p1p2 · · · pn then pi|(N−p1p2 · · · pn) = 1, a contradiction since
pi > 1.

• Proof by contrapositive: We already know that p → q ≡∼ q →∼ p.
So to prove p → q we sometimes instead prove ∼ q →∼ p.

Theorem 9
If n is an integer such that n2 is odd then n is also odd.

Proof.
Suppose that n is an integer that is even. Then there exists an integer k such



50 CHAPTER 2. FUNDAMENTALS OF MATHEMATICAL PROOFS

that n = 2k. But then n2 = 2(2k2) which is even.

Review Problems

Exercise 153
Use the proof by contradiction to prove the proposition ”There is no greatest
even integer.”

Exercise 154
Prove by contradiction that the difference of any rational number and any irra-
tional number is irrational.

Exercise 155
Use the proof by contraposition to show that if a product of two positive real
numbers is greater than 100, then at least one of the numbers is greater than 10.

Exercise 156
Use the proof by contradiction to show that the product of any nonzero rational
number and any irrational number is irrational.

2.4 Method of Proof by Induction

With the emphasis on structured programming has come the development of
an area called program verification, which means your program is correct as
you are writing it.
One technique essential to program verification is mathematical induction,
a method of proof that has been useful in every area of mathematics as well.
Consider an arbitrary loop in Pascal starting with the statement

FOR I := 1 TO N DO

If you want to verify that the loop does something regardless of the particular
integral value of N, you need mathematical induction.
Also, sums of the form

n∑

k=1

k =
n(n + 1)

2

are very useful in analysis of algorithms and a proof of this formula is mathe-
matical induction.
Next we examine this method. We want to prove that some predicate P (n) is
true for any nonnegative integer n ≥ n0. The steps of mathematical induction
are as follows:

(i) (Basis of induction) Show that P (n0) is true.
(ii) (Induction hypothesis) Assume P (n) is true.
(iii) (Induction step) Show that P (n + 1) is true.
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Exercise 157
Use the technique of mathematical induction to show that

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
, n ≥ 1.

Solution.
Let S(n) = 1 + 2 + · · ·+ n. Then
(i) (Basis of induction) S(1) = 1 = 1(1+1)

2 . That is, S(1)is true.
(ii) (Induction hypothesis) Assume S(n) is true. That is, S(n) = n(n+1)

2 .

(iii) (Induction step) We must show that S(n + 1) = (n+1)(n+2)
2 . Indeed,

S(n + 1) = 1 + 2 + · · ·+ n + (n + 1)
= S(n) + (n + 1)
= n(n+1)

2 + (n + 1)
= (n+1)(n+2)

2

Exercise 158(Geometric progression)
a. Let S(n) =

∑n
k=0 ark, n ≥ 0 where r 6= 1. Use induction to show that

S(n) = a(1−rn+1)
1−r .

b. Show that 1 + 1
2 + · · ·+ 1

2n−1 ≤ 2, for all n ≥ 1.
Solution.
a. We use the method of proof by mathematical induction.

(i) (Basis of induction) S(0) = a =
∑0

k=0 ark. That is, S(1)is true.
(ii) (Induction hypothesis) Assume S(n) is true. That is, S(n) =

∑n
k=0 ark.

(iii) (Induction step) We must show that S(n + 1) = a(1−rn+2)
1−r . Indeed,

S(n + 1) =
∑n+1

k=0 ark

= S(n) + arn+1

= a 1−rn+1

1−r + arn+1 1−r
1−r

= a 1−rn+1+rn+1−rn+2

1−r

= a 1−rn+2

1−r .

b. By a. we have

1 + 1
2 + 1

22 + · · ·+ 1
2n−1 = 1−( 1

2 )n

1− 1
2

= 2(1− ( 1
2 )n)

= 2− 1
2n−1

≤ 2.

Exercise 159(Arithmetic progression)
Let S(n) =

∑n
k=1(a + (k − 1)r), n ≥ 1. Use induction to show that S(n) =
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n
2 [2a + (n− 1)r].

Solution.
We use the method of proof by mathematical induction.

(i) (Basis of induction) S(1) = a = 1
2 [2a + (1− 1)r]. That is, S(1)is true.

(ii) (Induction hypothesis) Assume S(n) is true. That is, S(n) = n
2 [2a+(n−1)r].

(iii) (Induction step) We must show that S(n + 1) = (n+1)
2 [2a + nr]. Indeed,

S(n + 1) =
∑n+1

k=1(a + (k − 1)r)
= S(n) + a + (n + 1− 1)r
= n

2 [2a + (n− 1)r] + a + nr

= 2an+n2r−nr+2a+2nr
2

= 2a(n+1)+n(n+1)r
2

= n+1
2 [2a + nr].

We next exhibit a theorem whose proof uses mathematical induction.

Theorem 10
For all integers n ≥ 1, 22n − 1 is divisible by 3.

Proof.
Let P (n) : 22n − 1 is divisible by 3. Then
(i) (Basis of induction) P (1) is true since 3 is divisible by 3.
(ii) (Induction hypothesis) Assume P (n) is true. That is, 22n− 1 is divisible by
3.
(iii) (Induction step) We must show that 22n+2 − 1 is divisible by 3. Indeed,

22n+2 − 1 = 22n(4)− 1
= 22n(3 + 1)− 1
= 22n · 3 + (22n − 1)
= 22n · 3 + P (n)

Since 3|(22n − 1) and 3|(22n · 3) then 3|(22n · 3 + 22n − 1). This ends a proof of
the theorem

Exercise 160
a. Use induction to prove that n < 2n for all non-negative integers n.
b. Use induction to prove that 2n < n! for all non-negative integers n ≥ 4.
Solution.
a. Let S(n) = 2n − n, n ≥ 0. We want to show that S(n) > 0 is valid for all
n ≥ 0. By the method of mathematical induction we have
(i) (Basis of induction) S(0) = 20 − 0 = 1 > 0. That is, S(0)is true.
(ii) (Induction hypothesis) Assume S(n) is true. That is, S(n) > 0.
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(iii) (Induction step) We must show that S(n + 1) > 0. Indeed,

S(n + 1) = 2n+1 − (n + 1)
= 2n.2− n− 1
= 2n(1 + 1)− n− 1
= 2n − n + 2n − 1
= (2n − 1) + S(n)
> 2n − 1
≥ 0

since the smallest value of n is 0 and in this case 20 − 1 = 0.
b. Let S(n) = n!− 2n, n ≥ 4. We want to show that S(n) > 0 for all n ≥ 4. By
the method of mathematical induction we have
(i) (Basis of induction) S(4) = 4!− 24 = 8 > 0. That is, S(4)is true.
(ii) (Induction hypothesis) Assume S(n) is true. That is, S(n) > 0, n ≥ 4.
(iii) (Induction step) We must show that S(n + 1) > 0. Indeed,

S(n + 1) = (n + 1)!− 2n+1

= (n + 1)n!− 2n(1 + 1)
= n!− 2n + nn!− 2n

> 2(n!− 2n) = 2S(n)
> 0

where we have used the fact that if n ≥ 1 then nn! ≥ n!

Exercise 161(Bernoulli’s inequality)
Let h > −1. Use induction to show that

(1 + nh) ≤ (1 + h)n, n ≥ 0.

Solution.
Let S(n) = (1 + h)n − (1 + nh). We want to show that S(n) ≥ 0 for all n ≥ 0.
We use mathematical induction as follows.
(i) (Basis of induction) S(0) = (1 + h)0 − (1 + 0h) = 0. That is, S(0)is true.
(ii) (Induction hypothesis) Assume S(n) is true. That is, S(n) ≥ 0, n ≥ 0.
(iii) (Induction step) We must show that S(n + 1) ≥ 0. Indeed,

S(n + 1) = (1 + h)n+1 − (1 + (n + 1)h)
= (1 + h)(1 + h)n − nh− 1− h
≥ (1 + h)(1 + nh)− nh− 1− h
= nh2

≥ 0.

Exercise 162
Define the following sequence of numbers: a1 = 2 and for n ≥ 2, an = 5an−1.
Find a formula for an and then prove its validity by mathematical induction.
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Solution.
Listing the first few terms we find, a1 = 2, a2 = 10, a3 = 50, a4 = 250. Thus,
an = 2.5n−1. We will show that this formula is valid for all n ≥ 1 by the method
of mathematical induction.
(i) (Basis of induction) a1 = 2 = 2.51−1. That is, a1is true.
(ii) (Induction hypothesis) Assume an is true. That is, an = 2.5n−1

(iii) (Induction step) We must show that an+1 = 2.5n. Indeed,

an+1 = 5an

= 5(2.5n−1)
= 2.5n.

Review Problems

Exercise 163
Use the method of induction to show that

2 + 4 + 6 + · · ·+ 2n = n2 + n

for all integers n ≥ 1.

Exercise 164
Use mathematical induction to prove that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all integers n ≥ 0.

Exercise 165
Use mathematical induction to show that

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

for all integers n ≥ 1.

Exercise 166
Use mathematical induction to show that

13 + 23 + · · ·+ n3 =
(

n(n + 1)
2

)2

for all integers n ≥ 1.

Exercise 167
Use mathematical induction to show that

1
1 · 2 +

1
2 · 3 + · · ·+ 1

n(n + 1)
=

n

n + 1
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for all integers n ≥ 1.

Exercise 168
Use the formula

1 + 2 + · · ·+ n =
n(n + 1)

2

to find the value of the sum

3 + 4 + · · ·+ 1, 000.

Exercise 169
Find the value of the geometric sum

1 +
1
2

+
1
22

+ · · ·+ 1
2n

.

Exercise 170
Let S(n) =

∑n
k=1

k
(k+1)! . Evaluate S(1), S(2), S(3), S(4), and S(5). Make a con-

jecture about a formula for this sum for general n, and prove your conjecture
by mathematical induction.

Exercise 171
For each positive integer n let P (n) be the proposition 4n − 1 is divisible by 3.

a. Write P (1). Is P (1) true?
b. Write P (k).
c. Write P (k + 1).
d. In a proof by mathematical induction that this divisibility property holds for
all integers n ≥ 1, what must be shown in the induction step?

Exercise 172
For each positive integer n let P (n) be the proposition 23n− 1 is divisible by 7.
Prove this property by mathematical induction.

Exercise 173
Show that 2n < (n + 2)! for all integers n ≥ 0.

Exercise 174
a. Use mathematical induction to show that n3 > 2n + 1 for all integers n ≥ 2.
b. Use mathematical induction to show that n! > n2 for all integers n ≥ 4.

Exercise 175
A sequence a1, a2, · · · is defined by a1 = 3 and an = 7an−1 for n ≥ 2. Show that
an = 3 · 7n−1 for all integers n ≥ 1.
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2.5 Project III: Elementary Number Theory and
Mathematical Proofs

Recall that the set of positive integers together with zero is denoted by IN. The
set of all integers is denoted by ZZ and the set of rational numbers is denoted by IQ.

We say that an integer n is even if and only if there exists an integer k such
that n = 2k. An integer n is said to be odd if and only if there exists an integer
k such that n = 2k + 1.

Exercise 176
Let m and n be two integers.
a. Is 6m + 8n an even integer?
b. Is 6m + 4n2 + 3 odd?

Let a and b be two integers with a 6= 0. We say that b is divisible by a,
written a|b, if there exists an integer k such that b = ka. In this case we say
that a divides b, a is a factor of b, and b is a multiple of a. For example, 3 6 |7
whereas 3|12.

Exercise 177
Prove the following theorem.

Theorem 11
Let a 6= 0, b 6= 0, and c be integers.
(i) If a|b and a|c then a|(b± c).
(ii) If a|b then a|bc.
(iii) If a|b and b|c then a|c.

A positive integer p > 1 is called prime if 1 and p are the only divisors of p. A
number which is not prime is called a composite number. For example, 3 is
prime whereas 10 is composite.

Exercise 178
Let m and n be positive integers with m > n. Is m2 − n2 composite?

Exercise 179
Write the first 7 prime numbers.

Exercise 180
If a positive number p is composite then one can always write p as the product
of primes, where the prime factors are written in increasing order. This result is
known as the Fundamental Theorem of Arithmetic or the Unique Fac-
torization Theorem. Write the prime factorization of 180.
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The following important theorem shows that if a number is not divisible by
any prime less than to its square root then the number must be prime.

Theorem 12
If n is a composite integer, then n has a prime divisor less than or equal to

√
n.

Proof. Since n is composite then there is a divisor a of n such that 1 < a < n.
Write n = ab. If a >

√
n and b >

√
n then n = ab >

√
n
√

n = n, a false conclu-
sion. Thus, either a ≤ √

n or b ≤ √
n. Hence, n has a positive divisor which is

less than or equal to
√

n. This divisor is either prime or, by the Fundamental
Theorem of Arithmetic has a prime divisor. In either case, n has a prime divisor
less than or equal to

√
n

Exercise 181
Use the previous theorem to show that the number 101 is prime.

2.6 Project IV: The Euclidean Algorithm

Exercise 182
Let a and b be two integers not both equal to zero. We say that d is the
greatest common divisor of a and b, written d = gcd(a, b), if d is the largest
integer such that d|a and d|b. If d = 1 then we say that a and b are relatively
prime. To find d one writes the prime factorization of both a and b, say
a = pa1

1 pa2
2 · · · pan

n , b = pb1
1 pb2

2 · · · pbn
n , then

d = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(an,bn)

n .

(i) Find gcd(120, 500).
(ii) Show that 17 and 22 are relatively prime.

Exercise 183
We say that m is the least common multiple of two positive integers a and
b, written m = lcm(a, b), if m is the smallest positive integer that is divisible
by both a and b. Using the notation of the previous exercise m is given by
m = p

max(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(an,bn)

n . Find lcm(120, 500).

Exercise 183
Recall that a ≡ b mod n if and only if a− b = kn for some integer k.
(i) Show that if a ≡ b mod n and c ≡ d mod n then a + c ≡ b + d mod n.
(ii) Show that if a ≡ b mod n and c ≡ d mod n then ac ≡ bd mod n.
(iii) What are the solutions of the linear congruences 3x ≡ 4(mod7)?

Lemma 1 (Euclidean Algorithm)
Let a, b, q, and r be integers such that a = bq + r. Then gcd(a, b) = gcd(b, r).
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Proof.
Let d1 = gcd(a, b) and d2 = gcd(b, r). We will show that d1 = d2. Since d2|b
then d2|bq. Also d2|r. Consequently d2|(bq + r) that is d2|a. Hence, d2 ≤ d1. A
similar argument shows that d1 ≤ d2. We conclude that d1 = d2

Using Lemma 1 we derive an algorithm, called the Euclidean Algorithm,
for finding the greatest common divisor of two non-negative integers a and b
with b 6= 0.
Dividing a by b we obtain

a = bq + r1, where 0 ≤ r1 < b.

By Lemma 1 we have gcd(a, b) = gcd(b, r1). If r1 6= 0 then we divide b by r1 to
obtain

b = r1q1 + r2, where 0 ≤ r2 < r1.

Again by Lemma 1 we have gcd(b, r1) = gcd(r1, r2). If r2 6= 0 then we divide r1

by r2 to obtain
r1 = r2q2 + r3, where 0 ≤ r3 < r2.

By Lemma 1 we have gcd(r1, r2) = gcd(r2, r3). Repeating the above process,
ultimately, we will end up with rn = rn+1qn+1. In this case rn+1 = gcd(a, b).

Exercise 185
a. Use the Euclidean algorithm to find gcd(414, 662).
b. Use the Euclidean algorithm to find gcd(287, 91).

2.7 Project V: Induction and the Algebra of Ma-
trices

In this section, we introduce the concept of a matrix. We also examine four oper-
ations on matrices- equality, addition, scalar multiplication, and multiplication.

A matrix A of size m× n is a rectangular array of the form

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn




where the aij ’s are the entries of the matrix, m is the number of rows, n is the
number of columns. The zero matrix 0 is the matrix whose entries are all 0.
The n×n identity matrix In is a square matrix whose main diagonal consists
of 1′s and the off diagonal entries are all 0. A matrix A can be represented with
the following compact notation A = (aij). The ith row of the matrix A is

[ai1, ai2, ..., ain]
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and the jth column is 


a1j

a2j

...
amj




In what follows we discuss the basic arithmetic of matrices.

Two matrices are said to be equal if they have the same size and their cor-
responding entries are all equal. If the matrix A is not equal to the matrix B
we write A 6= B.

Exercise 186
Find x1, x2 and x3 such that




x1 + x2 + 2x3 0 1
2 3 2x1 + 4x2 − 3x3

4 3x1 + 6x2 − 5x3 5


 =




9 0 1
2 3 1
4 0 5




Exercise 187
Solve the following matrix equation for a, b, c, and d

(
a− b b + c
3d + c 2a− 4d

)
=

(
8 1
7 6

)

Next, we introduce the operation of addition of two matrices. If A and B are
two matrices of the same size, then the sum A + B is the matrix obtained by
adding together the corresponding entries in the two matrices. Matrices of dif-
ferent sizes cannot be added.

Exercise 188
Consider the matrices

A =
(

2 1
3 4

)
, B =

(
2 1
3 5

)
, C =

(
2 1 0
3 4 0

)

Compute, if possible, A + B, A + C and B + C.
If A is a matrix and c is a scalar, then the product cA is the matrix ob-
tained by multiplying each entry of A by c. Hence, −A = (−1)A. We define,
A−B = A + (−B). The matrix cIn is called a scalar matrix.

Exercise 189
Consider the matrices

A =
(

2 3 4
1 2 1

)
, B =

(
0 2 7
1 −3 5

)
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Compute A− 3B.

Exercise 190
Let A be an m × n matrix. The transpose of A, denote by AT , is the n ×m
whose columns are the rows of A. Find the transpose of the matrix

A =
(

2 3 4
1 2 1

)
,

Now, let A be a matrix of size m×n and entries aij ; B is a matrix of size n× p
and entries bij . Then the product matrix is a matrix of size m× p and entries

cij = ai1b1j + ai2b2j + · · ·+ ainbnj

that is cij is obtained by multiplying componentwise the entries of the ith row
of A by the entries of the jth column of B. It is very important to keep in mind
that the number of columns of the first matrix must be equal to the number of
rows of the second matrix; otherwise the product is undefined.

Exercise 191
Consider the matrices

A =
(

1 2 4
2 6 0

)
, B =




4 1 4 3
0 −1 3 1
2 7 5 2




Compute, if possible, AB and BA.

Exercise 192
Prove by induction on n ≥ 1 that

(
2 1
0 2

)n

=
(

2n n2n−1

0 2n

)
.



Chapter 3

Fundamentals of Set Theory

Set is the most basic term in mathematics and computer science. Hardly any
discussion in either subject can proceed without set or some synonym such as
class or collection. In this chapter we introduce the concept of sets and its
various operations and then study the properties of these operations.

3.1 Basic Definitions

We first consider the following known as the barber puzzle:” The army cap-
tain orders his company barber to shave all members of the company provided
they do not shave themselves. The barber is so busy at first that his own beard
begins to be unsightly. Just as he lathers up, the impossibility of his position
strikes him: If he shaves himself, he disobeys the captain’s order. If he does not
shave himself, then by the captain’s order he is supposed to shave himself.”
A situation like this is known as a paradox. To resolve the problem one has to
take the barber out of the company. Another well known paradox is

Russell’s Paradox. Define the set A = {X : X is a set, X 6∈ X}.
Since A is a set then saying that A ∈ A will imply that A 6∈ A by the definition
of A. Saying that A 6∈ A means that A ∈ A by the definition of A. Thus in either
case the assumption that A is a set leads to an untenable paradox: A ∈ A and
A 6∈ A. Hence, A is not a set.
Such a paradox indicated the necessity of a formal axiomatization of set theory.
We define a set A as a collection of well-defined objects (called elements or
members of A) such that for any given object x either one (but not both) of
the following holds:

• x belongs to A and we write x ∈ A.

• x does not belong to A, and in this case we write x 6∈ A.

We denote sets by capital letters A,B, C, · · · and elements by lowercase letters
a, b, c, · · · Sets consisting of sets will be denoted by script letters.

61
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There are two different ways to represent a set. The first one is to list, without
repetition, the elements of the set. The other way is to describe a property that
characterizes the elements of the set.
We define the empty set, denoted by ∅, to be the set with no elements.

Exercise 193
List the elements of the following sets.
a. {x|x is a real number such that x2 = 1}.
b. {x|x is an integer such that x2 − 3 = 0}.
Solution.
a. {−1, 1}.
b. ∅

Exercise 194
Use a property to give a description of each of the following sets.
a. {a, e, i, o, u}.
b. {1, 3, 5, 7, 9}.
Solution.
a. {x|x is a vowel}.
b. {n ∈ IN∗|n is odd and less than 10}

Let A and B be two sets. We say that A is a subset of B, denoted by A ⊆ B,
if and only if every element of A is also an element of B. Symbolically:

A ⊆ B ⇔ ∀x, x ∈ A implies x ∈ B

If there exists an element of A which is not in B then we write A 6⊆ B.
Since the proposition x ∈ ∅ is always false then for any set A we have

∅ ⊆ A ⇔ ∀x, x ∈ ∅ implies x ∈ A

Exercise 195
Suppose that A = {2, 4, 6}, B = {2, 6}, and C = {4, 6}. Determine which of
these sets are subsets of which other of these sets.
Solution.
B ⊆ A and C ⊆ A

If sets A and B are represented as regions in the plane, relationships between
A and B can be represented by pictures, called Venn diagram.

Exercise 196
Represent A ⊆ B using Venn diagram.
Solution.
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B
A

Two sets A and B are said to be equal if and only if A ⊆ B and B ⊆ A.
We write A = B. Thus, to show that A = B it suffices to show the double
inclusions mentioned in the definition. For non-equal sets we write A 6= B.

Exercise 197
Determine whether each of the following pairs of sets are equal.
(a) {1, 3, 5} and {5, 3, 1}.
(b) {{1}} and {1, {1}}.

Solution.
(a) {1, 3, 5} = {5, 3, 1}.
(b) {{1}} 6= {1, {1}} since 1 6∈ {{1}}

Let A and B be two sets. We say that A is a proper subset of B, denoted
by A ⊂ B, if A ⊆ B and A 6= B. Thus, to show that A is a proper subset of
B we must show that every element of A is an element of B and there is an
element of B which is not in A.

Exercise 198
Order the sets of numbers: ZZ, IR, IQ, IN using ⊂
Solution.
IN ⊂ ZZ ⊂ IQ ⊂ IR

Exercise 199
Determine whether each of the following statements is true or false.
(a) x ∈ {x} (b) {x} ⊆ {x} (c) {x} ∈ {x}
(d) {x} ∈ {{x}} (e) ∅ ⊆ {x} (f) ∅ ∈ {x}
Solution.
(a) True (b) True (c) False (d) True (e) True (f) False

If U is a given set whose subsets are under consideration, then we call U a
universal set.
Let U be a universal set and A,B be two subsets of U. The absolute comple-
ment of A is the set

Ac = {x ∈ U |x 6∈ A}.
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The relative complement of A with respect to B is the set

B −A = {x ∈ U |x ∈ B and x 6∈ A}.

Exercise 200
Let U = IR. Consider the sets A = {x ∈ IR|x < −1 or x > 1} and B = {x ∈
IR|x ≤ 0}. Find

a. Ac.
b. B −A.
Solution.
a. Ac = [−1, 1].
b. B −A = [−1, 0]

Let A and B be two sets. The union of A and B is the set

A ∪B = {x|x ∈ A or x ∈ B}.

where the ’or’ is inclusive. This defenition can be extended to more than two
sets. More precisely, if A1, A2, · · · , are sets then

∪∞n=1An = {x|x ∈ Ai for some i}.

Let A and B be two sets. The intersection of A and B is the set

A ∩B = {x|x ∈ A and x ∈ B}.

If A∩B = ∅ we say that A and B are disjoint sets. Given the sets A1, A2, · · · ,
we define

∩∞n=1An = {x|x ∈ Ai for all i}.
Exercise 201
Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}.

a. Find A ∪ (B ∩ C), (A ∪ B) ∩ C, and (A ∪ B) ∩ (A ∪ C). Which of these
sets are equal?
b. Find A ∩ (B ∪ C), (A ∩B) ∪ C, and (A ∩B) ∪ (A ∩ C). Which of these sets
are equal?
c. Find A− (B − C) and (A−B)− C. Are these sets equal?
Solution.
a. A∪(B∩C) = A, (A∪B)∩C = {b, c}, (A∪B)∩(A∪C) = {b, c} = (A∪B)∩C.
b. A∩(B∪C) = {b, c}, (A∩B)∪C = C, (A∩B)∪(A∩C) = {b, c} = (A∩B)∪C.
c. A− (B − C) = A and (A−B)− C = {a} 6= A− (B − C).

Exercise 202
For each n ≥ 1, let An = {x ∈ IR : x < 1 + 1

n}. Show that

∩∞n=1An = {x ∈ IR : x ≤ 1}.
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Solution.
The proof is by double inclusions method. Let y ∈ {x ∈ IR : x ≤ 1}. Then for
all positive integer n we have y ≤ 1 < 1 + 1

n . That is, y ∈ ∩∞n=1An. This shows
that {x ∈ IR : x ≤ 1} ⊆ ∩∞n=1An.
Conversely, let y ∈ ∩∞n=1An. Then y < 1 + 1

n for all n ≥ 1. Now take the limit
of both sides as n → ∞ to obtain y ≤ 1. That is, y ∈ {x ∈ IR : x ≤ 1}. This
shows that ∩∞n=1An ⊆ {x ∈ IR : x ≤ 1}.

Exercise 203
The symmetric difference of A and B, denoted by A∆B, is the set containing
those elements in either A or B but not both. Find A∆B if A = {1, 3, 5} and
B = {1, 2, 3}.
Solution.
A∆B = {2, 5}

The notation (a1, a2, · · · , an) is called an ordered n-tuples. We say that two
n-tuples (a1, a2, · · · , an) and (b1, b2, · · · , bn) are equal if and only if a1 = b1, a2 =
b2, · · · , an = bn.
Given n sets A1, A2, · · · , An the Cartesian product of these sets is the set

A1 ×A2 × · · · ×An = {(a1, a2, · · · , an) : a1 ∈ A1, a2 ∈ A2, · · · , an ∈ An}

Exercise 204
Let A = {x, y}, B = {1, 2, 3}, and C = {a, b}. Find
a. A×B × C.
b. (A×B)× C.
Solution.
a.

A×B × C = {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),
(y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b)

(y, 2, b), (y, 3, b)}
b.

(A×B)× C = {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a), ((y, 2), a),
((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b), ((y, 1), b)

((y, 2), b), ((y, 3), b)}

Next, we introduce one more special kind of sets, denoted by Σ∗. An alphabet
is a finite nonempty set Σ whose members are called letters and with the re-
strictions that Σ does not contain letters which are themselves strings beginning
with other letters of Σ. Thus, Σ = {a, b, c, ca} is not an alphabet. A word is
any finite string of letters from Σ. We denote the set of all words using letters
from Σ by Σ∗. Any subset of Σ∗ is called a language. For example, if Σ consists
of the twenty six letters of the english alphabet, then the American language
can be defined as the subset of Σ∗ consisting of words in the latest edition of
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the Webster’s World dictionary of the American Language.
The empty word or the null word is the string with no letters. It is denoted
by ε.
We define the length of a word w to be the number of letters from Σ in w and we
write |w|. Note that in order to define the length of a word the restriction given
in the definition is needed. To be more precise, suppose that Σ = {a, b, ab}.
Then what is the length of the word aab? Is this a word with two letters a
and ab or three letters a, a, and b? So obviously there is no way to tell. This
ambiguity is resolved by making the restriction stated in the definition above.
Finally, by Σn we mean the set of all words over Σ of length n. That is, Σn is
the cartesian product of n copies of Σ.

Exercise 205
Let Σ = {a, b}. List all the elements of the set

A = {w ∈ Σ∗ : |w| = 2}.

Solution.

A = {aa, ab, ba, bb}

Review Problems

Exercise 206
Which of the following sets are equal?
a. {a, b, c, d}
b. {d, e, a, c}
c. {d, b, a, c}
d. {a, a, d, e, c, e}

Exercise 207
Let A = {c, d, f, g}, B = {f, j}, and C = {d, g}. Answer each of the following
questions. Give reasons for your answers.
a. Is B ⊆ A?
b. Is C ⊆ A?
c. Is C ⊆ C?
d. Is C is a proper subset of A?

Exercise 208
a. Is 3 ∈ {1, 2, 3}?
b. Is 1 ⊆ {1}?
c. Is {2} ∈ {1, 2}?
d. Is {3} ∈ {1, {2}, {3}}?
e. Is 1 ∈ {1}?
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f. Is {2} ⊆ {1, {2}, {3}}?
g. Is {1} ⊆ {1, 2}?
h. Is 1 ∈ {{1}, 2}?
i. Is {1} ⊆ {1, {2}}?
j. Is {1} ⊆ {1}?

Exercise 209
Let A = {b, c, d, f, g} and B = {a, b, c}. Find each of the following:
a. A ∪B.
b. A ∩B.
c. A−B.
d. B −A.

Exercise 210
Indicate which of the following relationships are true and which are false:
a. ZZ+ ⊆ IQ.
b. IR− ⊂ IQ.
c. IQ ⊂ ZZ.
d. ZZ+ ∪ ZZ− = ZZ.
e. IQ ∩ IR = IQ.
f. IQ ∪ ZZ = ZZ.
g. ZZ+ ∩ IR = ZZ+

h. ZZ ∪ IQ = IQ.

Exercise 211
Let A = {x, y, z, w} and B = {a, b}. List the elements of each of the following
sets:
a. A×B
b. B ×A
c. A×A
d. B ×B.

Exercise 212
Let Σ = {x, y} be an alphabet.
a. Let L1 be the language consisting of all strings over Σ that are palindromes
and have length ≤ 4. List the elements L1.
b. Let L2 be the language consisting of all strings over Σ that begins with x
and have length ≤ 3. List the elements L2.
c. Let L3 be the language consisting of all strings over Σ with length ≤ 3 and
for which all the x′s appear to the left of all the y′s. List the elements L3.
d. List the elements of Σ4, the set of all strings of length 4 over Σ.
e. Let A = Σ3 ∪ Σ4. Describe A, B, and A ∪B in words.
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3.2 Properties of Sets

The following exercise shows that the operation ⊆ is reflexive and transitive,
concepts that will be discussed in the next chapter.

Exercise 213
a. Suppose that A,B, C are sets such that A ⊆ B and B ⊆ C. Show that A ⊆ C.
b. Find two sets A and B such that A ∈ B and A ⊆ B.
c. Show that A ⊆ A.
Solution.
a. We need to show that every element of A is an element of C. Let x ∈ A.
Since A ⊆ B then x ∈ B. But B ⊆ C so that x ∈ C.
b. A = {x} and B = {x, {x}}.
c. The proposition if x ∈ A then x ∈ A is always true. Thus, A ⊆ A

Theorem 13
Let A and B be two sets. Then
a. A ∩B ⊆ A and A ∩B ⊆ B.
b. A ⊆ A ∪B and B ⊆ A ∪B.

Proof.
a. If x ∈ A ∩ B then x ∈ A and x ∈ B. This still imply that x ∈ A. Hence,
A ∩B ⊆ A. A similar argument holds for A ∩B ⊆ B.
b. The proposition ”if x ∈ A then x ∈ A∪B” is always true. Hence, A ⊆ A∪B.
A similar argument holds for B ⊆ A ∪B

Theorem 14
Let A be a subset of a universal set U. Then
a. ∅c = U.
b. U c = ∅.
c. (Ac)c = A.
d. A ∪Ac = U.
e. A ∩Ac = ∅.

Proof.
a. If x ∈ U then x ∈ U and x 6∈ ∅. Thus, U ⊆ ∅c. Conversely, suppose that
x ∈ ∅c. Then x ∈ U and x 6∈ ∅. This implies that x ∈ U. Hence, ∅c ⊆ U.
b. It is always true that ∅ ⊆ U c. Conversely, the proposition ”x ∈ U and x 6∈ U
implies x ∈ ∅” is vacuously true since the hypothesis is false. This says that
U c ⊆ ∅.
c. Let x ∈ (Ac)c. Then x ∈ U and x 6∈ Ac. That is, x ∈ U and (x 6∈ U or x ∈ A).
Since x ∈ U then x ∈ A. Hence (Ac)c ⊆ A. Conversely, suppose that x ∈ A.
Then x ∈ U and x ∈ A. That is, x ∈ U and x 6∈ Ac. Thus, x ∈ (Ac)c. This
shows that A ⊆ (Ac)c.
d. It is clear that A ∪ Ac ⊆ U. Conversely, suppose that x ∈ U. Then either
x ∈ A or x 6∈ A. But this is the same as saying that x ∈ A ∪Ac.
e. By definition ∅ ⊆ A∩Ac. Conversely, the conditional proposition ”x ∈ A and
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x 6∈ A implies x ∈ ∅” is vacuously true since the hypothesis is false. This shows
that A ∩Ac ⊆ ∅

Theorem 15
If A and B are subsets of U then
a. A ∪ U = U.
b. A ∪A = A.
c. A ∪ ∅ = A.
d. A ∪B = B ∪A.
e. (A ∪B) ∪ C = A ∪ (B ∪ C).

Proof.
a. Clearly, A ∪ U ⊆ U. Conversely, let x ∈ U . Then definitely, x ∈ A ∪ U. That
is, U ⊆ A ∪ U.
b. If x ∈ A then x ∈ A or x ∈ A. That is, x ∈ A∪A and consequently A ⊆ A∪A.
Conversely, if x ∈ A ∪A then x ∈ A. Hence, A ∪A ⊆ A.
c. If x ∈ A ∪ ∅ then x ∈ A since x 6∈ ∅. Thus, A ∪ ∅ ⊆ A. Conversely, if x ∈ A
then x ∈ A or x ∈ ∅. Hence, A ⊆ A ∪ ∅.
d. If x ∈ A∪B then x ∈ A or x ∈ B. But this is the same thing as saying x ∈ B
or x ∈ A. That is, x ∈ B ∪ A. Now interchange the roles of A and B to show
that B ∪A ⊆ A ∪B.
e. Let x ∈ (A ∪B) ∪C. Then x ∈ (A ∪B) or x ∈ C. Thus, (x ∈ A or x ∈ B) or
x ∈ C. This implies x ∈ A or (x ∈ B or x ∈ C). Hence, x ∈ A ∪ (B ∪ C). The
converse is similar

Theorem 16
Let A and B be subsets of U . Then
a. A ∩ U = A.
b. A ∩A = A.
c. A ∩ ∅ = ∅.
d. A ∩B = B ∩A.
e. (A ∩B) ∩ C = A ∩ (B ∩ C).

Proof.
a. If x ∈ A ∩ U then x ∈ A. That is , A ∩ U ⊆ A. Conversely, let x ∈ A. Then
definitely, x ∈ A and x ∈ U. That is, x ∈ A ∩ U. Hence, A ⊆ A ∩ U.
b. If x ∈ A then x ∈ A and x ∈ A. That is, A ⊆ A∩A. Conversely, if x ∈ A∩A
then x ∈ A. Hence, A ∩A ⊆ A.
c. Clearly ∅ ⊆ A ∩ ∅. Conversely, if x ∈ A ∩ ∅ then x ∈ ∅. Hence, A ∩ ∅ ⊆ ∅.
d. If x ∈ A ∩ B then x ∈ A and x ∈ B. But this is the same thing as saying
x ∈ B and x ∈ A. That is, x ∈ B ∩A. Now interchange the roles of A and B to
show that B ∩A ⊆ A ∩B.
e. Let x ∈ (A∩B)∩C. Then x ∈ (A∩B) and x ∈ C. Thus, (x ∈ A and x ∈ B)
and x ∈ C. This implies x ∈ A and (x ∈ B and x ∈ C). Hence, x ∈ A∩ (B∩C).
The converse is similar
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Theorem 17
If A,B, and C are subsets of U then
a. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
b. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof.
a. Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. Thus, x ∈ A and (x ∈ B
or x ∈ C). This implies that (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C). Hence,
x ∈ A ∩B or x ∈ A ∩ C, i.e. x ∈ (A ∩B) ∪ (A ∩ C). The converse is similar.
b. Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ B ∩ C. Thus, x ∈ A or (x ∈ B
and x ∈ C). This implies that (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C). Hence,
x ∈ A ∪B and x ∈ A ∪C, i.e. x ∈ (A ∪B) ∩ (A ∪C). The converse is similar

Theorem 18 (De Morgan’s Laws)
Let A and B be subsets of U then
a. (A ∪B)c = Ac ∩Bc.
b. (A ∩B)c = Ac ∪Bc.

Proof.
a. Let x ∈ (A ∪ B)c. Then x ∈ U and x 6∈ A ∪ B. Hence, x ∈ U and (x 6∈ A
and x 6∈ B). This implies that (x ∈ U and x 6∈ A) and (x ∈ U and x 6∈ B). It
follows that x ∈ Ac ∩Bc. Now, go backward for the converse.
b. Let x ∈ (A ∩ B)c. Then x ∈ U and x 6∈ A ∩ B. Hence, x ∈ U and (x 6∈ A or
x 6∈ B). This implies that (x ∈ U and x 6∈ B) or (x ∈ U and x 6∈ A). It follows
that x ∈ Ac ∪Bc. The converse is similar

Theorem 19
Suppose that A ⊆ B. Then
a. A ∩B = A.
b. A ∪B = B.

Proof.
a. If x ∈ A∩B then by the definition of intersection of two sets we have x ∈ A.
Hence, A∩B ⊆ A. Conversely, if x ∈ A then x ∈ B as well since A ⊆ B. Hence,
x ∈ A ∩B. This shows that A ⊆ A ∩B.
b. If x ∈ A ∪ B then x ∈ A or x ∈ B. Since A ⊆ B then x ∈ B. Hence,
A∪B ⊆ B. Conversely, if x ∈ B then x ∈ A∪B. This shows that B ⊆ A∪B.

Exercise 214
Let A and B be arbitrary sets. Show that (A−B) ∩B = ∅.
Solution.
Suppose not. That is, suppose (A − B) ∩ B 6= ∅. Then there is an element x
that belongs to both A − B and B. By the definition of A − B we have that
x 6∈ B. Thus, x ∈ B and x 6∈ B which is a contradiction
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A collection of nonempty subsets {A1, A2, · · · , An} of A is said to be a par-
tition of A if and only if

(i) A = ∪n
k=1Ak.

(ii) Ai ∩Aj = ∅ for all i 6= j.

Exercise 215
Let A = {1, 2, 3, 4, 5, 6}, A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}. Show that
{A1, A2, A3} is a partition of A.
Solution.
(i) A1 ∪A2 ∪A3 = A.
(ii) A1 ∩A2 = A1 ∩A3 = A2 ∩A3 = ∅.

The number of elements of a set is called the cardinality of the set. We write
|A| to denote the cardinality of the set A. If A has a finite cardinality we say
that A is a finite set. Otherwise, it is called infinite.

Exercise 216
What is the cardinality of each of the following sets.
(a) ∅.
(b) {∅}.
(c) {a, {a}, {a, {a}}}.
Solution.
(a) |∅| = 0
(b) |{∅}| = 1
(c) |{a, {a}, {a, {a}}}| = 3

Let A be a set. The power set of A, denoted by P(A), is the empty set
together with all possible subsets of A.

Exercise 217
Find the power set of A = {a, b, c}.
Solution.

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, c}}

Theorem 20
If A ⊆ B then P(A) ⊆ P(B).

Proof.
Let X ∈ P(A). Then X ⊆ A. Since A ⊆ B then X ⊆ B. Hence, X ∈ P(B)

Exercise 218
a. Use induction to show that if |A| = n then |P(A)| = 2n.
b. If P(A) has 256 elements, how many elements are there in A?
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Solution.
a. If n = 0 then A = ∅ and in this case P(A) = {∅}. Thus |P(A)| = 1. As induc-
tion hypothesis, suppose that if |A| = n then |P(A)| = 2n. Let B = A∪{an+1}.
Then P(B) consists of all subsets of A and all subsets of A with the element
an+1 added to them. Hence, |P(B)| = 2n + 2n = 2 · 2n = 2n+1.
b. Since |P(A)| = 256 = 28 then |A| = 8

Review Problems

Exercise 219
Let A,B, and C be sets. Prove that if A ⊆ B then A ∩ C ⊆ B ∩ C.

Exercise 220
Find sets A, B, and C such that A ∩ C = B ∩ C but A 6= B.

Exercise 221
Find sets A, B, and C such that A∩C ⊆ B∩C and A∪C ⊆ B∪C but A 6= B.

Exercise 222
Let A and B be two sets. Prove that if A ⊆ B then Bc ⊆ Ac.

Exercise 223
Let A,B, and C be sets. Prove that if A ⊆ C and B ⊆ C then A ∪B ⊆ C.

Exercise 224
Let A,B, and C be sets. Show that A× (B ∪ C) = (A×B) ∪ (A× C).

Exercise 225
Let A,B, and C be sets. Show that A× (B ∩ C) = (A×B) ∩ (A× C).

Exercise 226
a. Is the number 0 in ∅? Why?
b. Is ∅ = {∅}? Why?
c. Is ∅ ∈ {∅}? Why?

Exercise 227
Let A and B be two sets. Prove that (A−B) ∩ (A ∩B) = ∅.

Exercise 228
Let A and B be two sets. Show that if A ⊆ B then A ∩Bc = ∅.

Exercise 229
Let A, B and C be three sets. Prove that if A ⊆ B and B∩C = ∅ then A∩C = ∅.

Exercise 230
Find two sets A and B such that A ∩B = ∅ but A×B 6= ∅.
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Exercise 231
Suppose that A = {1, 2} and B = {2, 3}. Find each of the following:
a. P(A ∩ B).
b. P(A).
c. P(A ∪ B).
d. P(A× B).

Exercise 232
a. Find P(∅).
b. Find P(P(∅)).
c. Find P(P(P(∅))).

Exercise 233
Determine which of the following statements are true and which are false. Prove
each statement that is true and give a counterexample for each statement that
is false.
a. P(A ∪ B) = P(A) ∪ P(B).
b. P(A ∩ B) = P(A) ∩ P(B).
c. P(A) ∪ P(B) ⊆ P(A ∪ B).
d. P(A× B) = P(A)× P(B).

3.3 Project VI: Boolean Algebra

A Boolean algebra is a nonempty set S together with two operations ⊕ and
¯ that satisfy the following axioms:

• a⊕ b ∈ S and a¯ b ∈ S for all a, b ∈ S.
• a⊕ b = b⊕ a and a¯ b = b¯ a, ∀a, b ∈ S.
• a⊕ (b⊕ c) = (a⊕ b)⊕ c and a¯ (b¯ c) = (a¯ b)¯ c), ∀a, b, c ∈ S.
• a⊕ (b¯ c) = (a⊕ b)¯ (a⊕ c) and a¯ (b⊕ c) = a¯ b⊕ a¯ c ∀a, b, c ∈ S.
• There exist distinct elements 0 and 1 in S such that a⊕ 0 = a and a¯ 1 = a
∀a ∈ S.
• For each a ∈ S there exits an element a such that a ⊕ a = 1 and a ¯ a = 0.
We call a the complement or the negation of a.

We write (S,⊕,¯).

Exercise 234
Show that if S is a collection of propositions with finite propositinal variables
then (S,∨,∧) is a Boolean algebra.

Exercise 235
Show that for a given nonempty set S, (P(S),∪,∩) is a Boolean algebra.
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Chapter 4

Relations and Functions

The reader is familiar with many relations which are used in mathematics and
computer science, i.e. ”is a subset of”, ” is less than” and so on.
One frequently wants to compare or contrast various members of a set, per-
haps to arrange them in some appropriate order or to group together those with
similar properties. The mathematical framework to describe this kind of orga-
nization of sets is the theory of relations.
There are three kinds of relations which we discuss in this chapter: (i) equiva-
lence relations, (ii) order relations, (iii) functions.

4.1 Equivalence Relations

Let A be a given set. An ordered pair (a, b) of elements in A is defined to be
the set {a, {a, b}}. The element a (resp. b) is called the first (resp. second)
component.

Exercise 236
a. Show that if a 6= b then (a, b) 6= (b, a).
b. Show that (a, b) = (c, d) if and only if a = c and b = d.
Solution.
a. If a 6= b then {a, {a, b}} 6= {b, {a, b}}. That is, (a, b) 6= (b, a).
b. (a, b) = (c, d) if and only if {a, {a, b} = {c, {c, d}} and this is equivalent to
a = c and {a, b} = {c, d} by the definition of equality of sets. Thus, a = c and
b = d.

Exercise 237
Find x and y such that (x + y, 0) = (1, x− y).
Solution.
By the previous exercise we have the system

{
x + y = 1
x − y = 0

75
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Solving by the method of elimination one finds x = 1
2 and y = 1

2 .

If A and B are sets, we let A × B denote the set of all ordered pairs (a, b)
where a ∈ A and b ∈ B. We call A×B the Cartesian product of A and B.

Exercise 238
a. Show that if A is a set with m elements and B is a set of n elements then
A×B is a set of mn elements.
b. Show that if A×B = ∅ then A = ∅ or B = ∅.
Solution.
a. Consider an ordered pair (a, b). There are m possibilities for a. For each
fixed a, there are n possibilities for b. Thus, there are m×n ordered pairs (a, b).
That is, |A×B| = mn.
b. We use the proof by contrapositive. Suppose that A 6= ∅ and B 6= ∅. Then
there is at least an a ∈ A and an element b ∈ B. That is, (a, b) ∈ A × B and
this shows that A×B 6= ∅. A contradiction to the assumption that A×B = ∅

Exercise 239
Let A = {1, 2}, B = {1}. Show that A×B 6= B ×A.
Solution.
We have A×B = {(1, 1), (2, 1)} 6= {(1, 1), (1, 2)} = B ×A.

A binary relation R from a set A to a set B is a subset of A×B. If (a, b) ∈ R
we write aRb and we say that a is related to b. If a is not related to B we write
a 6 Rb. In case A = B we call R a binary relation on A.
The set

Dom(R) = {a ∈ A|(a, b) ∈ R for some b ∈ B}
is called the domain of R. The set

Range(R) = {b ∈ B|(a, b) ∈ R for some a ∈ A}
is called the range of R.

Exercise 240
a. Let A = {2, 3, 4} and B = {3, 4, 5, 6, 7}. Define the relation R by aRb if and
only if a divides b. Find, R, Dom(R), Range(R).
b. Let A = {1, 2, 3, 4}. Define the relation R by aRb if and only if a ≤ b. Find,
R,Dom(R), Range(R).

Solution.
a. R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}, Dom(R) = {2, 3, 4}, and Range(R) =
{3, 4, 6}.
b. R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}, Dom(R) =
A,Range(R) = A.
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A function is a special case of a relation. A function from A to B, denoted by
f : A → B, is a relation from A to B such that for every x ∈ A there is a unique
y ∈ B such that (x, y) ∈ f. The element y is called the image of x and we write
y = f(x). The set A is called the domain of f and the set of all images of f is
called the range of f. Functions will be discussed in more details in Section 4.3.

Exercise 241
a. Show that the relation

f = {(1, a), (2, b), (3, a)}

defines a function from A = {1, 2, 3} to B = {a, b, c}. Find its range.
b. Show that the relation f = {(1, a), (2, b), (3, c), (1, b)} does not define a func-
tion from A = {1, 2, 3} to B = {a, b, c}.
Solution.
a. Note that each element of A has exactly one image. Hence, f is a function
with domain A and range Range(f) = {a, b}.
b. The relation f does not define a function since the element 1 has two images,
namely a and b.

An informative way to picture a relation on a set is to draw its digraph. To
draw a digraph of a relation on a set A, we first draw dots or vertices to repre-
sent the elements of A. Next, if (a, b) ∈ R we draw an arrow (called a directed
edge) from a to b. Finally, if (a, a) ∈ R then the directed edge is simply a loop.

Exercise 242
Draw the directed graph of the relation in part (b) of Exercise 4.1.
Solution.

1

2

3

4.

.
 ..

Next we discuss three ways of building new relations from given ones. Let
R be a relation from a set A to a set B. The inverse of R is the relation R−1

from Range(R) to Dom(R) such that

R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.
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Exercise 243
Let R = {(1, y), (1, z), (3, y)} be a relation from A = {1, 2, 3} to B = {x, y, z}.
a. Find R−1.
b. Compare (R−1)−1 and R.
Solution.
a. R−1 = {(y, 1), (z, 1), (y, 3)}.
b. (R−1)−1 = R.

Let R and S be two relations from a set A to a set B. Then we define the
relations R ∪ S and R ∩ S by

R ∪ S = {(a, b) ∈ A×B|(a, b) ∈ R or (a, b) ∈ S},

and
R ∩ S = {(a, b) ∈ A×B|(a, b) ∈ A and (a, b) ∈ B}.

Exercise 244
Given the following two relations from A = {1, 2, 4} to B = {2, 6, 8, 10} :

aRb if and only if a|b.
aSb if and only if b− 4 = a.

List the elements of R, S,R ∪ S, and R ∩ S.
Solution.

R = {(1, 2), (1, 6), (1, 8), (1, 10), (2, 2), (2, 6), (2, 8), (2, 10), (4, 8)}
S = {(2, 6), (4, 8)}

R ∪ S = R
R ∩ S = S

Now, If we have a relation R from A to B and a relation S from B to C we can
define the relation S ◦ R, called the composition relation, to be the relation
from A to C defined by

S ◦R = {(a, c)|(a, b) ∈ R and (b, c) ∈ S for some b ∈ B}.

Exercise 245
Let

R = {(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)}
S = {(2, u), (4, s), (4, t), (6, t), (8, u)}

Find S ◦R.
Solution.

S ◦R = {(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)}

We next define four types of binary relations. A relation R on a set A is called
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reflexive if (a, a) ∈ R for all a ∈ A. In this case, the digraph of R has a loop
at each vertex.

Exercise 246
a. Show that the relation a ≤ b on the set A = {1, 2, 3, 4} is reflexive.
b. Show that the relation on IR defined by aRb if and only if a < b is not
reflexive.
Solution.
a. By Exercise 242, each vertex has a loop.
b. Indeed, for any real number a we have a− a = 0 and not a− a < 0.

A relation R on A is called symmetric if whenever (a, b) ∈ R then we must have
(b, a) ∈ R. The digraph of a symmetric relation has the property that when-
ever there is a directed edge from a to b, there is also a directed edge from b to a.

Exercise 247
a. Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}. Show that R is sym-
metric.
b. Let IR be the set of real numbers and R be the relation aRb if and only if
a < b. Show that R is not symmetric.
Solution.
a. bRc and cRb so R is symmetric.
b. 2 < 4 but 4 6< 2.

A relation R on a set A is called antisymmetric if whenever (a, b) ∈ R and
a 6= b then (b, a) 6∈ R. The digraph of an antisymmetric relation has the prop-
erty that between any two vertices there is at most one directed edge.

Exercise 248
a. Let IN be the set of nonnegative integers and R the relation aRb if and only
if a divides b. Show that R is antisymmetric.
b. Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}. Show that R is not
antisymmetric.
Solution.
a. Suppose that a|b and b|a. We must show that a = b. Indeed, by the definition
of division, there exist positive integers k1 and k2 such that b = k1a and a = k2b.
This implis that a = k2k1a and hence k1k2 = 1. Since k1 and k2 are positive
integers then we must have k1 = k2 = 1. Hence, a = b.
b. bRc and cRb with b 6= c.

A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R
then (a, c) ∈ R. The digraph of a transitive relation has the property that when-
ever there are directed edges from a to b and from b to c then there is also a
directed edge from a to c.

Exercise 249
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a. Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}. Show that R is not
transitive.
b. Let ZZ be the set of integers and R the relation aRb if a divides b. Show that
R is transitive.
Solution.
a. (b, c) ∈ R and (c, b) ∈ R but (b, b) 6∈ R.
b. Suppose that a|b and b|c. Then there exist integers k1 and k2 such that
b = k1a and c = k2b. Thus, c = (k1k2)a which means that a|c.

Now, let A1, A2, · · · , An be a partition of a set A. That is, the A′is are sub-
sets of A that satisfy
(i) ∪n

i=1Ai = A
(ii) Ai ∩Aj = ∅ for i 6= j.
Define on A the binary relation x R y if and only if x and y belongs to the same
set Ai for some 1 ≤ i ≤ n.

Theorem 21
The relation R defined above is reflexive, symmetric, and transitive.

Proof.
• R is reflexive: If x ∈ A then by (i) x ∈ Ak for some 1 ≤ k ≤ n. Thus, x and x
belong to Ak so that x R x.
• R is symmetric: Let x, y ∈ A such that x R y. Then there is an index k such
that x, y ∈ Ak. But then y, x ∈ Ak. That is, y R x.
• R is transitive: Let x, y, z ∈ A such that x R y and y R z. Then there exist
indices i and j such that x, y ∈ Ai and y, z ∈ Aj . Since y ∈ Ai ∩Aj then by (ii)
we must have i = j. This implies that x, y, z ∈ Ai and in particular x, z ∈ Ai.
Hence, x R z.

A relation that is reflexive, symmetric, and transitive on a set A is called an
equivalence relation on A. For example, the relation ”=” is an equivalence
relation on IR.

Exercise 250
Let ZZ be the set of integers and n ∈ ZZ. Let R be the relation on ZZ defined by
aRb if a − b is a multiple of n. We denote this relation by a ≡ b (mod n) read
”a congruent to b modulo n.” Show that R is an equivalence relation on ZZ.
Solution.
≡ is reflexive: For all a ∈ ZZ, a− a = 0 · n. That is, a ≡ a (mod n).
≡ is symmetric: Let a, b ∈ ZZ such that a ≡ b (mod n). Then there is an integer
k such that a− b = kn. Multiply both sides of this equality by (−1) and letting
k′ = −k we find that b− a = k′n. That is b ≡ a (mod n).
≡ is transitive: Let a, b, c ∈ ZZ be such that a ≡ b (mod n) and b ≡ c (mod n).
Then there exist integers k1 and k2 such that a − b = k1n and b − c = k2n.
Adding these equalities together we find a − c = kn where k = k1 + k2 ∈ ZZ
which shows that a ≡ c (mod n).
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Theorem 22
Let R be an equivalence relation on A. For each a ∈ A let

[a] = {x ∈ A|xRa}
A/R = {[a]|a ∈ A}.

Then the union of all the elements of A/R is equal to A and the intersection
of any two distinct members of A/R is the empty set. That is, the family A/R
forms a partition of A.

Proof.
By the definition of [a] we have that [a] ⊆ A. Hence, ∪a∈A[a] ⊆ A. We next
show that A ⊆ ∪a∈A[a]. Indeed, let a ∈ A. Since A is reflexive then a ∈ [a]
and consequently a ∈ ∪b∈A[b]. Hence, A ⊆ ∪b∈A[b]. It follows that A = ∪a∈A[a].
This establishes (i).
It remains to show that if [a] 6= [b] then [a] ∩ [b] = ∅ for a, b ∈ A. Suppose the
contrary. That is, suppose [a] ∩ [b] 6= ∅. Then there is an element c ∈ [a] ∩ [b].
This means that c ∈ [a] and c ∈ [b]. Hence, a R c and b R c. Since R is symmet-
ric and transitive then a R b. We will show that the conclusion a R b leads to
[a] = [b]. The proof is by double inclusions. Let x ∈ [a]. Then x R a. Since a R b
and R is transitive then x R b which means that x ∈ [b]. Thus, [a] ⊆ [b]. Now
interchange the letters a and b to show that [b] ⊆ [a]. Hence, [a] = [b] which
contradicts our assumption that [a] 6= [b]. This establishes (ii). Thus, A/R is a
partition of A.

The sets [a] defined in the previous exercise are called the equivalence classes
of A given by the relation R. The element a in [a] is called a representative
of the equivalence class [a].

Review Problems

Exercise 251
Let X = {a, b, c}. Recall that P(X) is the power set of X. Define a binary
relation R on P(X) as follows:

A,B ∈ P(x), A R B ⇔ |A| = |B|.
a. Is {a, b}R{b, c}?
b. Is {a}R{a, b}?
c. Is {c}R{b}?

Exercise 252
Let Σ = {a, b}. Then Σ4 is the set of all strings over Σ of length 4. Define a
relation R on Σ4 as follows:

s, t ∈ Σ4, s R t ⇔ s has the same first two characters as t.
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a. Is abaa R abba?
b. Is aabb R bbaa?
c. Is aaaa R aaab?

Exercise 253
Let A = {4, 5, 6} and B = {5, 6, 7} and define the binary relations R, S, and T
from A to B as follows:

(x, y) ∈ A×B, (x, y) ∈ R ⇔ x ≥ y.

(x, y) ∈ A×B, x S y ⇔ 2|(x− y).

T = {(4, 7), (6, 5), (6, 7)}.
a. Draw arrow diagrams for R,S, and T.
b. Indicate whether any of the relations S, R, or T are functions.

Exercise 254
Let A = {3, 4, 5} and B = {4, 5, 6} and define the binary relation R as follows:

(x, y) ∈ A×B, (x, y) ∈ R ⇔ x < y.

List the elements of the sets R and R−1.

Exercise 255
Let A = {2, 4} and B = {6, 8, 10} and define the binary relations R, S, and T
from A to B as follows:

(x, y) ∈ A×B, (x, y) ∈ R ⇔ x|y.

(x, y) ∈ A×B, x S y ⇔ y − 4 = x.

List the elements of A×B,R, S, R ∪ S, and R ∩ S.

Exercise 256
Consider the binary relation on IR defined as follows:

x, y ∈ R, x R y ⇔ x ≥ y.

Is R reflexive? symmetric? transitive?

Exercise 257
Consider the binary relation on IR defined as follows:

x, y ∈ R, x R y ⇔ xy ≥ 0.

Is R reflexive? symmetric? transitive?
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Exercise 258
Let Σ = {0, 1} and A = Σ∗. Consider the binary relation on A defined as follows:

x, y ∈ A, x R y ⇔ |x| < |y|,

where |x| denotes the length of the string x. Is R reflexive? symmetric? transi-
tive?

Exercise 259
Let A 6= ∅ and P(A) be the power set of A. Consider the binary relation on
P(A) defined as follows:

X, Y ∈ P(A), X R Y ⇔ X ⊆ Y.

Is R reflexive? symmetric? transitive?

Exercise 260
Let E be the binary relation on ZZ defined as follows:

a E b ⇔ m ≡ n (mod 2).

Show that E is an equivalence relation on ZZ and find the different equivalence
classes.

Exercise 261
Let I be the binary relation on IR defined as follows:

a I b ⇔ a− b ∈ ZZ.

Show that I is an equivalence relation on IR and find the different equivalence
classes.

Exercise 262
Let A be the set all straight lines in the cartesian plane. Let || be the binary
relation on A defined as follows:

l1||l2 ⇔ l1 is parallel to l2.

Show that || is an equivalence relation on A and find the different equivalence
classes.

Exercise 263
Let A = IN× IN. Define the binary relation R on A as follows:

(a, b) R (c, d) ⇔ a + d = b + c.

a. Show that R is reflexive.
b. Show that R is symmetric.
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c. Show that R is transitive.
d. List five elements in [(1, 1)].
e. List five elements in [(3, 1)].
f. List five elements in [(1, 2)].
g. Describe the distinct equivalence classes of R.

Exercise 264
Let R be a binary relation on a set A and suppose that R is symmetric and
transitive. Prove the following: If for every x ∈ A there is a y ∈ A such that
x R y then R is reflexive and hence an equivalence relation on A.

4.2 Partial Order Relations

A relation ≤ on a set A is called a partial order if ≤ is reflexive, antisymmet-
ric, and transitive. In this case we call A a poset.

Exercise 265
Show that the set ZZ of integers together with the relation of inequality ≤ is a
poset.
Solution.
≤ is reflexive: For all x ∈ ZZ we have x ≤ x since x = x.
≤ is antisymmetric: By the trichotomy law of real numbers, for a given pair of
numbers x and y only one of the following is true: x < y, x = y, or x > y. So if
x ≤ y and y ≤ x then we must have x = y.
≤ is transitive: By the transitivity property of < in IR if x < y and y < z then
x < z. Thus, if x ≤ y and y ≤ z then the definition of ≤ and the above property
imply that x ≤ z.

Exercise 266
Show that the relation a|b in IN∗ is a partial order relation.
Solution.
Reflexivity: Since a = 1 · a then a|a.
Antisymmetry: Suppose that a|b and b|a. Then there exist positive integers k1

and k2 such that b = k1a and a = k2b. Hence, a = k1k2a which implies that
k1k2 = 1. Since k1, k2 ∈ IN∗ then we must have k1 = k2 = 1; that is, a = b.
Transitivity: Suppose that a|b and b|c. Then there exist positive integers k1 and
k2 such that b = k1a and c = k2b. Thus, c = k1k2a which means that a|c.

Exercise 267
Let A be a collection of subsets. Let R be the relation defined by

A R B ⇔ A ⊆ B.

Show that A is a poset.
Solution.
⊆ is reflexive: For any set X ∈ A, X ⊆ X.



4.2. PARTIAL ORDER RELATIONS 85

⊆ is antisymmetric: By the definition of = if X ⊆ Y and Y ⊆ X then X = Y,
where X, Y ∈ A.
⊆ is transitive: We have seen in Chapter 3 that if X ⊆ Y and Y ⊆ Z then
X ⊆ Z.

To figure out which of two words comes first in an English dictionary, one
compares their letters one by one from left to right. If all the letters have been
the same to a certain point and one word is runs out of letters, that word comes
first in the dictionary. For example, play comes before playground. If all the let-
ters up to a certain point are the same and the next letters differ, then the word
whose next letter is located earlier in the alphabet comes first in the dictionary.
For example, playground comes before playmate. This type of order relation is
called lexicographic or dictionary order. A general definition is the following:

Let Σ∗ be the set of words with letters from an ordered set Σ. Define the
relation ≤ on Σ∗ as follows: for all w, z ∈ Σ∗, w ≤ z if and only if either

(a)z = wu for some u ∈ Σ∗, or
(b)w = xu and z = xv where u, v ∈ Σ∗ such that the first letter of u precedes
the first letter of v in the ordering of Σ.
Then it can be shown that ≤ is a partial order relation on Σ∗.

Exercise 268
Let Σ = {a, b} and suppose that Σ has the partial order relation R = {(a, a), (a, b), (b, b)}.
Let ≤ be the corresponding lexicographic order on Σ∗. Indicate which of the fol-
lowing statements are true.

a. aab ≤ aaba.
b. bbab ≤ bba.
c. ε ≤ aba.
d. aba ≤ abb.
e. bbab ≤ bbaa.
f. ababa ≤ ababaa.
g. bbaba ≤ bbabb.
Solution.
a. True since aaba = (aab)a.
b. False since bba ≤ bbab.
c. True since aba = εaba.
d. True since aba = (ab)a, abb = (ab)b and a R b.
e. False since bbaa ≤ bbab.
f. True since ababaa = (ababa)a.
g. True since bbaba = (bbab)a, bbabb = (bbab)b and a R b.

Another simple pictorial representation of a partial order is the so called Hasse
diagram. The Hasse diagram of a partial order on the set A is a drawing of
the points of A and some of the arrows of the digraph of the order relation. We
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assume that the directed edges of the digraph point upward. There are rules to
determine which arrows are drawn and which are omitted, namely,

• omit all arrows that can be inferred from transitivity
• omit all loops
• draw arrows without ”heads”.

Exercise 269
Let A = {1, 2, 3, 9, 18} and the ”divides” relation on A. Draw the Hasse diagram
of this relation.
Solution.
The directed graph of the given relation is

2

18

9

3

1.
.

.

.

.

The corresponding Hasse diagram is given by

2

18

9

3

1

.
.

.
.

.

Now, given the Hasse diagram of a partial order relation one can find the dia-
graph as follows:

• Reisert the direction markers on the arrows making all arrows point upward
• add loops at each vertex
• for each sequence of arrows from one point to a second point and from that
second point to a third point, add an arrow from the first point to the third.

Exercise 270
Let A = {1, 2, 3, 4} be a poset. Find the directed graph corresponding to the
following Hasse diagram on A.
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.

.
.

.

1

2

3

4

Solution.

.

.
.

.

1

3
2

4

Next, if A is a poset then we say that a and b are comparable if either a ≤ b
or b ≤ a. If every pair of elements of A are comparable then we call ≤ a totally
ordered relation.

Exercise 271
Consider the ”divides” relation defined on the set A = {5, 15, 30}. Prove that
this relation is a total order on A.
Solution.
The facts that ”divides” relation is a partial order relation is easy to verify. Since
5|15, 5|30, and 15|30 then any pair of elements in A are comparable. Thus, the
”divides” relation is a total order relation on A.

Exercise 272
Show that the ”divides” relation on IN∗ is not a total partial order.
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Solution.
A counterexample of two noncomparable numbers are 2 and 3. Since 2 does not
divide 3 and 3 does not divide 2.

Review Problems

Exercise 273
Let Σ = {a, b} and let Σ∗ be the set of all strings over Σ. Define the relation R
on Σ∗ as follows: for all s, t ∈ Σ∗,

s R t ⇔ l(s) ≤ l(t),

where l(x) denotes the length of the word x. Is R antisymmetric? Prove or give
a counterexample.

Exercise 274
Define a relation R on ZZ as follows: for all m, n ∈ ZZ

m R n ⇔ m + n is even.

Is R a partial order? Prove or give a counterexample.

Exercise 275
Define a relation R on IR as follows: for all m,n ∈ IR

m R n ⇔ m2 ≤ n2.

Is R a partial order? Prove or give a counterexample.

Exercise 276
Let S = {0, 1} and consider the partial order relation R defined on S × S as
follows: for all ordered pairs (a, b) and (c, d) in S × S

(a, b) R (c, d) ⇔ a ≤ c and b ≤ d.

Draw the Hasse diagram for R.

Exercise 277
Consider the ”divides” relation defined on the set A = {1, 2, 22, · · · , 2n}, where
n is a nonnegative integer.
a. Prove that this relation is a total order on A.
b. Draw the Hasse diagram for this relation when n = 3.

4.3 Functions: Definitions and Examples

A function is a special case of a relation. A function f from a set A to a set
B is a relation from A to B such that for every x ∈ A there is a unique y ∈ B
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such that (x, y) ∈ f. For (x, y) ∈ f we use the notation y = f(x). We call
y the image of x under f. The set A is called the domain of f whereas B is
called the codomain. The collection of all images of f is called the range of f.

Exercise 278
Show that the relation f = {(1, a), (2, b), (3, a)} defines a function from A =
{1, 2, 3} to B = {a, b, c}. Find its range.
Solution.
Since every element of A has a unique image then f is a function. Its range
consists of the elements a and b.

Exercise 279
Show that the relation f = {(1, a), (2, b), (3, c), (1, b)} does not define a function
from A = {1, 2, 3} to B = {a, b, c}.
Solution.
Indeed, since 1 has two images in B then f is not a function.

Exercise 280
A sequence of elements of a set A is a function from IN∗ to A. We write (an)
and we call an the nth term of the sequence.
a. Define the sequence an = n, n ≥ 1. Compute

∑n
k=1 ak.

b. Define the sequence an = n2. Compute the sum
∑n

k=1 ak.
Solution.
a. Let Sn =

∑n
k=1 ak. Then write Sn in two different ways, namely, Sn =

1 + 2 + · · · + n and Sn = n + (n − 1) + · · · + 1. Adding, we obtain 2Sn =
(n + 1) + (n + 1) + · · ·+ (n + 1) = n(n + 1). Thus, Sn = n(n+1)

2 .
b. First note that (n+1)3−n3 = 3n2+3n+1. From this we obtain the following
chain of equalities:

23 − 13 = 3(1)2 + 3(1) + 1
33 − 23 = 3(2)2 + 3(2) + 1
...

(n + 1)3 − n3 = 3n2 + 3n + 1

Adding these equalities we find

3
n∑

k=1

k2 + 3
n∑

k=1

k + n = (n + 1)3 − 1.

Using a. we find

3
n∑

k=1

k2 +
3n(n + 1)

2
+ n = n3 + 3n2 + 3n.

A simple arithmetic shows that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.
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Exercise 281
Let A = {a, b, c}. Define the function f : P(A) → IN by f(X) = |X|. Find the
range of f.
Solution.
By applying f to each member of P(A) we find Range(f) = {0, 1, 2, 3}.

Exercise 282
Consider the alphabet Σ = {a, b} and the function f : Σ∗ → ZZ defined as
follows: for any string s ∈ Σ∗

f(s) = the number of a′s in s.

Find f(ε), f(ababb), and f(bbbaa).
Solution.
f(ε) = 0, f(ababb) = 2, and f(bbbaa) = 2.

Exercise 283(Equality of functions)
Two functions f and g defined on the same domain D are said to be equal if
and only if f(x) = g(x) for all x ∈ D. Show that the functions f, g : IR → IR
defined by f(x) = |x| and g(x) =

√
x2 are equal.

Solution.
A simple argument by the method of proof by cases shows that

√
x2 = |x|.

Exercise 284(Hamming distance function)
Let Σ = {0, 1} and Σn be the set of all strings of 0’s and 1’s of length n. Define
the function H : Σn × Σn → IN as follows: for any (s, t) ∈ Σn × Σn

H(s, t) = number of positions in which s and t have different values.

For the case n = 5, find H(00101, 01110) and H(10001, 01111).
Solution.
H(00101, 01110) = 3 and H(10001, 01111) = 4.

Exercise 285(Boolean functions)
An n-place Boolean function f is a function from the Cartesian product
{0, 1}n to {0, 1}. Consider the 3-place Boolean function f : {0, 1}3 → {0, 1}
defined by

f(x1, x2, x3) = (x1 + x2 + x3) mod 2.

Describe f using an input/output table.
Solution.
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x1 x2 x3 f(x1, x2, x3)
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

Exercise 286(Encoding and Decoding functions)
Let Σ = {0, 1} and Σ∗ be the set of all strings of 0’s and 1’s. Let L be the set
of all strings over Σ that consist of consecutive triples of identical bits. Thus,
111000 ∈ L. A message consisting of 0’s and 1’s is encoded by writing each bit
in it three times. The encoded message is decoded by replacing each section of
three identical bits by the one bit to which all three are equal.
We define the encoding function E : Σ∗ → L by

E(s) = the string obtained from s by replacing each bit of s
by the same bit written three times

and we define the decoding function D : L → Σ∗ by

D(s) = the string obtained from s by replacing consecutive triple of bits
of s by a single copy of that bit.

Find E(0110) and D(111111000111).
Solution.
We have E(0110) = 000111111000 and D(111111000111) = 1101.

Now, let A and B be subsets of IR. A function f : A → B is called a real-
valued function of a real variable. In this case, each ordered pair (x, f(x))
can be represented by a point in the Cartesian plane. The collection of all such
points is called the graph of f.

Exercise 287
Consider the power function fa(x) = xa, where a, x ∈ IR+ ∪ {0}. Graph on the
same Cartesian plane the functions f0(x), f1(x), f 1

2
(x), and f2(x).

Solution.
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x

y

1

0

f0

f
1/2

f
1

f2

Exercise 288
Graph the functions f(x) = bxc and g(x) = dxe on the closed interval [−4, 4].
Solution.

-4 -3 -2 -1 0 1 2 3 4

x

x

0 2 3 41-4 -3 -2 -1

-1
-2
-3

-4

1

2

3

.
.

.
.

.

.
.

.
.

4

.
.

.
.

.

.
.

. .

Exercise 289
Graph the function f : IN → IR defined by f(n) =

√
n.

Solution.
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.
.

.
. . .

Exercise 290
Let Df be the domain of a function f and S ⊆ Df . We say that f is increasing
on S if and only if, for all x1, x2 ∈ S, if x1 < x2 then f(x1) < f(x2). Show that
the function f : IR → IR defined by f(x) = 2x− 3 is increasing on IR.
Solution.
Indeed, for any real numbers x1 and x2 such that x1 < x2, we have 2x1 − 3 <
2x2 − 3. That is, f(x1) < f(x2) so that f is increasing.

Exercise 291
Let Df be the domain of a function f and S ⊆ Df . We say that f is decreasing
on S if and only if, for all x1, x2 ∈ S, if x1 < x2 then f(x1) > f(x2). Show that
the function f : IR → IR defined by f(x) = x+2

x+1 is decreasing on (−∞,−1) and
(−1,∞).
Solution.
Indeed, for any real numbers x1, x2 ∈ (−∞,−1) or x1, x2 ∈ (−1,∞) such that
x1 < x2, we have (x1 + 1)(x2 + 1) > 0. This implies, that f(x1) − f(x2) =

x2−x1
(x1+1)(x2+1) > 0. Thus, f is decreasing on the given intervals.

Review Problems

Exercise 292
Let f, g : IR → IR be the functions f(x) = 2x and g(x) = 2x3+2x2

x2+1 . Show that
f = g.

Exercise 293
Let H, K : IR → IR be the functions H(x) = bxc + 1 and K(x) = dxe. Does
H = K? Explain.
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Exercise 294
Find functions defined on the set of nonnegative integers that define the se-
quences whose first six terms are given below.
a. 1,− 1

3 , 1
5 ,− 1

7 , 1
9 ,− 1

11 .
b. 0,−2, 4,−6, 8,−10.

Exercise 295
Let A = {1, 2, 3, 4, 5} and let F : P(A) → ZZ be defined as follows:

F (X) =
{

0 if X has an even number of elements
1 if X has an odd number of elements

Find the following

a. F ({1, 3, 4})
b. F (∅).
c. F ({2, 3}).
d. F ({2, 3, 4, 5}).

Exercise 296
Let Σ = {a, b} and Σ∗ be the set of all strings over Σ.
a. Define f : Σ∗ → ZZ as follows:

f(s) =
{

the number of b′s to the left of the left−most a in s
0 if s contains no a′s

Find f(aba), f(bbab), and f(b). What is the range of f?
b. Define g : Σ∗ → Σ∗ as follows:

g(s) = the string obtained by writing the characters of s in reverse order.

Find g(aba), g(bbab), and g(b). What is the range of g?

Exercise 297
Let E and D be the encoding and decoding functions.
a. Find E(0110) and D(111111000111).
b. Find E(1010) and D(000000111111).

Exercise 298
Let H denote the Hamming distance function on Σ5.
a. Find H(10101, 00011).
b. Find H(00110, 10111).

Exercise 299
Consider the three-place Boolean function f : {0, 1}3 → {0, 1} defined as fol-
lows:

f(x1, x2, x3) = (3x1 + x2 + 2x3) mod 2
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a. Find f(1, 1, 1) and f(0, 1, 1).
b. Describe f using an input/output table.

Exercise 300
Draw the graphs of the power functions f 1

3
(x) and f 1

4
(x) on the same set of

axes. When, 0 < x < 1, which is greater: x
1
3 or x

1
4 ? When x > 1, which is

greater s
1
3 or x

1
4 ?

Exercise 301
Graph the function f(x) = dxe − bxc on the interval (−∞,∞).

Exercise 302
Graph the function f(x) = x− bxc on the inerval (−∞,∞).

Exercise 303
Graph the function h : IN → IR defined by h(n) = bn

2 c.

Exercise 304
Let k : IR → IR be the function defined by the formula k(x) = x−1

x for all
nonzero real numbers x.
a. Show that k is increasing on (0,∞).
b. Is k increasing or decreasing on (−∞, 0)? Prove your answer.

4.4 Bijective and Inverse Functions

Let f : A → B be a function. We say that f is injective or one-to-one if
and only if for all x, y ∈ A, if f(x) = f(y) then x = y. Using the concept of
contrapositive, a function f is injective if and only if for all x, y ∈ A, if x 6= y
then f(x) 6= f(y). Taking the negation of this last conditional implication we
see that f is not injective if and only if there exist two distinct elements a and
b of A such that f(a) = f(b).

Exercise 305
a. Show that the identity function IA on a set A is injective.
b. Show that the fucntion f : ZZ → ZZ defined by f(n) = n2 is not injective.
Solution.
a. Let x, y ∈ A. If IA(x) = IA(y) then x = y by the definition of IA. This shows
that IA is injective.
b. Since 12 = (−1)2 and 1 6= −1 then f is not injective.

Exercise 306(Hash Functions)
Let m > 1 be a positive integer . Show that the function h : ZZ → ZZ defined by
h(n) = n mod m is not injective.
Solution.
Indeed, since m > 1 then 2m + 1 6= m + 1 and h(m + 1) = h(2m + 1) = 1. So h
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is not injective.

Exercise 307
Show that if f : IR → IR is increasing then f is one-to-one.
Solution.
Suppose that x1 6= x2. Then without lost of generality we can assume that
x1 < x2. Since f is increasing then f(x1) < f(x2). That is, f(x1) 6= f(x2).
Hence, f is one-to-one.

Exercise 308
Show that the composition of two injective functions is also injective.
Solution.
Let f : A → B and g : B → C be two injective functions. We will show that
g ◦f : A → C is also injective. Indeed, suppose that (g ◦f)(x1) = (g ◦f)(x2) for
x1, x2 ∈ A. Then g(f(x1)) = g(f(x2)). Since g is injective then f(x1) = f(x2).
Now since f is injective then x1 = x2. This completes the proof that g ◦ f is
injective.

Now, for any function f : A → B we have Range(f) ⊆ B. If equality holds
then we say that f is surjective or onto. It follows from this definition that a
function f is surjective if and only if for each y ∈ B there is an x ∈ A such that
f(x) = y. By taking the negation of this we see that f is not onto if there is a
y ∈ B such that f(x) 6= y for all x ∈ A.

Exercise 309
a. Show that the function f : IR → IR defined by f(x) = 3x− 5 is surjective.
b. Show that the function f : ZZ → ZZ defined by f(n) = 3n−5 is not surjective.
Solution.
a. Let y ∈ IR. Is there an x ∈ IR such that f(x) = y? That is, 3x− 5 = y. But
solving for x we find x = y+5

3 ∈ IR and f(x) = y. Thus, f is onto.
b. Take m = 3. If f is onto then there should be an n ∈ ZZ such that f(n) = 3.
That is, 3n− 5 = 3. Solving for n we find n = 8

3 which is not an integer. Hence,
f is not onto.

Exercise 310(Projection functions)
Let A and B be two nonempty sets. The functions prA : A × B → A defined
by prA(a, b) = a and prB : A × B → B defined by prB(a, b) = b are called
projection functions. Show that prA and prB are surjective functions.
Solution.
We prove that prA is surjective. Indeed, let a ∈ A. Since B is not empty then
there is a b ∈ B. But then (a, b) ∈ A × B and prA(a, b) = a. Hence, prA is
surjective. The proof that prB is surjective is similar.

Exercise 311
Show that the composition of two surjective functions is also surjective.
Solution.
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Let f : A → B and g : B → C, where Range(f) ⊆ C, be two surjective func-
tions. We will show that g ◦ f : A → D is also surjective. Indeed, let z ∈ D.
Since g is surjective then there is a y ∈ B such that g(y) = z. Since f is surjec-
tive then there is an x ∈ A such that f(x) = y. Thus, g(f(x)) = z. This shows
that g ◦ f is surjective.

Now, we say that a function f is bijective or one-to-one correspondence if
and only if f is both injective and surjective. A bijective function on a set A is
called a permutation.

Exercise 312
a. Show that the function f : IR → IR defined by f(x) = 3x − 5 is a bijective
function.
b. Show that the function f : IR → IR defined by f(x) = x2 is not bijective.
Solution.
a. First we show that f is injective. Indeed, suppose that f(x1) = f(x2). Then
3x1 − 5 = 3x2 − 5 and this implies that x1 = x2. Hence, f is injective. f is
surjective by Exercise 309 (a).
b. f is not injective since f(−1) = f(1) but −1 6= 1. Hence, f is not bijective.

Exercise 313
Show that the composition of two bijective functions is also bijective.
Solution.
This follows from Exercise 308 and Exercise 311

Theorem 23
Let f : X → Y be a bijective function. Then there is a function f−1 : Y → X
with the following properties:

a. f−1(y) = x if and only if f(x) = y.
b. f−1 ◦ f = IX and f ◦ f−1 = IY where IX denotes the identity function on X.
c. f−1 is bijective.

Proof.
For each y ∈ Y there is a unique x ∈ X such that f(x) = y since f is bijective.
Thus, we can define a function f−1 : Y → X by f−1(y) = x where f(x) = y.
a. Follows from the definition of f−1.
b. Indeed, let x ∈ X such that f(x) = y. Then f−1(y) = x and (f−1 ◦ f)(x) =
f−1(f(x)) = f−1(y) = x = IX(x). Since x was arbitrary then f−1 ◦ f = IX .
The proof that f ◦ f−1 = IY is similar.
c. We show first that f−1 is injective. Indeed, suppose f−1(y1) = f−1(y2).
Then f(f−1(y1)) = f(f−1(y2)); that is, (f ◦ f−1)(y1) = (f ◦ f−1)(y2). By b.
we have IY (y1) = IY (y2). From the definition of IY we obtain y1 = y2. Hence,
f−1 is injective. We next show that f−1 is surjective. Indeed, let y ∈ Y . Since
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f is onto there is a unique x ∈ X such that f(x) = y. By the defintion of
f−1, f−1(y) = x. Thus, for every element y ∈ Y there is an element x ∈ X such
that f−1(y) = x. This says that f−1 is surjective and completes a proof of the
theorem

Exercise 314
Show that f : IR → IR defined by f(x) = 3x− 5 is bijective and find a formula
for its inverse function.
Solution.
We have already proved that f is bijective. We will just find the formula for
its inverse function f−1. Indeed, if y ∈ Y we want to find x ∈ X such that
f−1(y) = x, or equivalently, f(x) = y. This implies that 3x− 5 = y and solving
for x we find x = y+5

3 . Thus, f−1(y) = y+5
3

Review Problems

Exercise 315
a. Define g : ZZ → ZZ by g(n) = 3n− 2.
(i) Is g one-to-one? Prove or give a counterexample.
(ii) Is g onto? Prove or give a counterexample.
b. Define G : IR → IR by G(x) = 3x− 2. Is G onto? Prove or give a counterex-
ample.

Exercise 316
Determine whether the function f : IR → IR given by f(x) = x+1

x is one-to-one
or not.

Exercise 317
Determine whether the function f : IR → IR given by f(x) = x

x2+1 is one-to-one
or not.

Exercise 318
Let f : IR → ZZ be the floor function f(x) = bxc.
a. Is f one-to-one? Prove or give a counterexample.
b. Is f onto? Prove or give a counterexample.

Exercise 319
Let Σ = {0, 1} and let l : Σ∗ → IN denote the length function.
a. Is l one-to-one? Prove or give a counterexample.
b. Is l onto? Prove or give a counterexample.

Exercise 320
If : IR → IR and g : IR → IR are one-to-one functions, is f + g also one-to-one?
Justify your answer.

Exercise 321
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Define F : P{a, b, c} → IN to be the number of elements of a subset of P{a, b, c}.
a. Is F one-to-one? Prove or give a counterexample.
b. Is F onto? Prove or give a counterexample.

Exercise 322
If : IR → IR and g : IR → IR are onto functions, is f + g also onto? Justify your
answer.

Exercise 323
Let Σ = {a, b} and let l : Σ∗ → IN be the length function. Let f : IN → {0, 1, 2}
be the hash function f(n) = n mod 3. Find (f ◦ l)(abaa), (f ◦ l)(baaab), and
(f ◦ l)(aaa).

Exercise 324
Show that the function F−1 : IR → IR given by F−1(y) = y−2

3 is the inverse of
the function F (x) = 3x + 2.

Exercise 325
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is one-to-one,
must both f and g be one-to-one? Prove or give a counterexample.

Exercise 326
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is onto, must
both f and g be onto? Prove or give a counterexample.

Exercise 327
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is one-to-one,
must f be one-to-one? Prove or give a counterexample.

Exercise 328
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is onto, must g
be onto? Prove or give a counterexample.

Exercise 329
Let f : W → X, g : X → Y and h : Y → Z be functions. Must h ◦ (g ◦ f) =
(h ◦ g) ◦ f? Prove or give a counterexample.

Exercise 330
Let f : X → Y and g : Y → Z be two bijective functions. Show that (g ◦ f)−1

exists and (g ◦ f)−1 = f−1 ◦ g−1.

4.5 Recursion

A recurrence relation for a sequence a0, a1, · · · is a relation that defines an

in terms of a0, a1, · · · , an−1. The formula relating an to earlier values in the
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sequence is called the generating rule. The assignment of a value to one of
the a’s is called an initial condition.

Exercise 331
The Fibonacci sequence

1, 1, 2, 3, 5, · · ·
is a sequence in which every number after the first two is the sum of the pre-
ceding two numbers. Find the generating rule and the initial conditions.
Solution.
The initial conditions are a0 = a1 = 1 and the generating rule is an = an−1 +
an−2, n ≥ 2.

Exercise 332
Let n ≥ 0 and find the number sn of words from the alphabet Σ = {0, 1} of
length n not containing the pattern 11 as a subword.
Solution.
Clearly, s0 = 1(empty word) and s1 = 2. We will find a recurrence relation for
sn, n ≥ 2. Any word of length n with letters from Σ begins with either 0 or 1.
If the word begins with 0, then the remaining n− 1 letters can be any sequence
of 0’s or 1’s except that 11 cannot happen. If the word begins with 1 then the
next letter must be 0 since 11 can not happen; the remaining n− 2 letters can
be any sequence of 0’s and 1’s with the exception that 11 is not allowed. Thus
the above two categories form a partition of the set of all words of length n with
letters from Σ and that do not contain 11. This implies the recurrence relation

sn = sn−1 + sn−2, n ≥ 2

A solution to a recurrence relation is an explicit formula for an in terms of n.
The most basic method for finding the solution of a sequence defined recursively
is by using iteration. The iteration method consists of starting with the initial
values of the sequence and then calculate successive terms of the sequence until
a pattern is observed. At that point one guesses an explicit formula for the
sequence and then uses mathematical induction to prove its validity.

Exercise 333
Find a solution for the recurrence relation{

a0 = 1
an = an−1 + 2, n ≥ 1

Solution.
Listing the first five terms of the sequence one finds

a0 = 1
a1 = 1 + 2
a2 = 1 + 4
a3 = 1 + 6
a4 = 1 + 8
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Hence, a guess is an = 2n + 1, n ≥ 0. It remains to show that this formula is
valid by using mathematical induction.

Basis of induction: For n = 0, a0 = 1 = 2(0) + 1.
Induction hypothesis: Suppose that an = 2n + 1.
Induction step: We must show that an+1 = 2(n + 1) + 1. By the definition of
an+1 we have an+1 = an + 2 = 2n + 1 + 2 = 2(n + 1) + 1.

Exercise 334
Consider the arithmetic sequence

an = an−1 + d, n ≥ 1

where a0 is the initial value. Find an explicit formula for an.
Solution.
Listing the first four terms of the sequence after a0 we find

a1 = a0 + d
a2 = a0 + 2d
a3 = a0 + 3d
a4 = a0 + 4d

Hence, a guess is an = a0 + nd. Next, we prove the validity of this formula by
induction.

Basis of induction: For n = 0, a0 = a0 + (0)d.
Induction hypothesis: Suppose that an = a0 + nd.
Induction step: We must show that an+1 = a0 + (n + 1)d. By the definition of
an+1 we have an+1 = an + d = a0 + nd + d = a0 + (n + 1)d.

Exercise 335
Consider the geometric sequence

an = ran−1, n ≥ 1

where a0 is the initial value. Find an explicit formula for an.
Solution.
Listing the first four terms of the sequence after a0 we find

a1 = ra0

a2 = r2a0

a3 = r3a0

a4 = r4a0

Hence, a guess is an = rna0. Next, we prove the validity of this formula by
induction.

Basis of induction: For n = 0, a0 = r0a0.
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Induction hypothesis: Suppose that an = rna0.
Induction step: We must show that an+1 = rn+1a0. By the definition of an+1

we have an+1 = ran = r(rna0) = rn+1a0.

Exercise 336
Find a solution to the recurrence relation

{
a0 = 0
an = an−1 + (n− 1), n ≥ 1

Solution.
Writing the first five terms of the sequence we find

a0 = 0
a1 = 0
a2 = 0 + 1
a3 = 0 + 1 + 2
a4 = 0 + 1 + 2 + 3

A guessing formula is that

an = 0 + 1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
.

We next show that the formula is valid by using induction on n ≥ 0.

Basis of induction: a0 = 0 = 0(0−1)
2 .

Induction hypothesis: Suppose that an = n(n−1)
2 .

Induction step: We must show that an+1 = n(n+1)
2 . Indeed,

an+1 = an + n

= n(n−1)
2 + n

= n(n+1)
2

Exercise 337
Consider the recurrence relation

{
a0 = 1
an = 2an−1 + n, n ≥ 1

Is it true that an = 2n + n is a solution to the given recurrence relation?
Solution.
If so then we must be able to prove its validity by mathematical induction.

Basis of induction: a0 = 20 + 1.
Induction hypothesis: Suppose that an = 2n + n.
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Induction step: We must show that an+1 = 2n+1 + (n + 1). If this is so then
we will have 2n+1 + (n + 1) = 2an + n = 2n+1 + 2n + n + 1. But this would
imply that n = 0 which contradicts the fact that n is any nonnegative integer.

Exercise 338
Define a sequence, a1, a2, · · · , recursively as follows:

a1 = 1
an = 2 · abn

2 c, n ≥ 2

a. Use iteration to guess an explicit formula for this sequence.
b. Use induction to prove the validity of the formula found in a.
Solution.
Computing the first few terms of the sequence we find

a1 = 1
a2 = 2
a3 = 2
a4 = 4
a5 = 4
a6 = 4
a7 = 4
a8 = · · · = a15 = 8

Hence, for 2i ≤ n < 2i+1, an = 2i. Moreover, i ≤ log2 n < i + 1 so that
i = blog2 nc and a formula for an is

an = 2blog2 nc, n ≥ 1.

b. We prove the above formula by mathematical induction.

Basis of induction: For n = 1, a1 = 1 = 2blog2 1c.
Induction hypothesis: Suppose that an = 2blog2 nc.
Induction step: We must show that an+1 = 2blog2 (n+1)c. Indeed, for n odd (i.e.
n + 1 even) we have

an+1 = 2 · abn+1
2 c

= 2 · an+1
2

= 2 · 2blog2
n+1

2 c

= 2blog2 (n+1)−1c+1

= 2blog2 (n+1)c−1+1

= 2blog2 (n+1)c

A similar argument holds when n is even.

When iteration does not apply, other methods are available for finding explicit
formulas for special classes of recursively defined sequences. The method ex-
plained below works for sequences of the form

an = Aan−1 + Ban−2 (4.1)
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where n is greater than or equal to some fixed nonnegative integer k and A and
B are real numbers with B 6= 0. Such an equation is called a second-order
linear homogeneous recurrence relation with constant coefficients.

Exercise 339
Does the Fibonacci sequence satisfy a second-order linear homogeneous relation
with constant coefficients?
Solution.
Recall that the Fibonacci sequence is defined recursively by an = an−1 + an−2

for n ≥ 2 and a0 = a1 = 1. Thus, an satisfies a second-order linear homogeneous
relation with A = B = 1.

The following theorem gives a technique for finding solutions to (4.1).

Theorem 24
Equation (4.1) is satisfied by the sequence 1, t, t2, · · · , tn, · · · where t 6= 0 if and
only if t is a solution to the characteristic equation

t2 −At−B = 0 (4.2)

Proof.
(=⇒): Suppose that t is a nonzero real number such that the sequence 1, t, t2, · · ·
satisfies (4.1). We will show that t satisfies the equation t2−At−B = 0. Indeed,
for n ≥ k we have

tn = Atn−1 + Btn−2.

Since t 6= 0 we can divide through by tn−2 and obtain t2 −At−B = 0.
(⇐=) : Suppose that t is a nonzero real number such that t2 − At − B = 0.
Multiply both sides of this equation by tn−2 to obtain

tn = Atn−1 + Btn−2.

This says that the sequence 1, t, t2, · · · satisfies (4.1)

Exercise 340
Consider the recurrence relation

an = an−1 + 2an−2, n ≥ 2.

Find two sequences that satisfy the given generating rule and have the form
1, t, t2, · · · .
Solution.
According to the previous theorem t must satisfy the characteristic equation

t2 − t− 2 = 0.

Solving for t we find t = 2 or t = −1. So the two solutions to the given recur-
rence sequence are 1, 2, 22, · · · , 2n, · · · and 1,−1, · · · , (−1)n, · · ·

Are there other solutions then the ones provided by Theorem 35? The answer
is yes according to the following theorem.
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Theorem 25
If sn and tn are solutions to (4.1) then for any real numbers C and D the
sequence

an = Csn + Dtn, n ≥ 0

is also a solution.

Proof.
Since sn and tn are solutions to (4.1) then for n ≥ 2 we have

sn = Asn−1 + Bsn−2

tn = Atn−1 + Btn−2

Therefore,

Aan−1 + Ban−2 = A(Csn−1 + Dtn−1) + B(Csn−2 + Dtn−2)
= C(Asn−1 + Bsn−2) + D(Atn−1 + Btn−2)
= Csn + Dtn = an

so that an satisfies (4.1)

Exercise 341
Find a solution to the recurrence relation

{
a0 = 1, a1 = 8

an = an−1 + 2an−2, n ≥ 2.

Solution.
By the previous theorem and Exercise 340, an = C2n + D(−1)n, n ≥ 2 is a
solution to the recurrence relation

an = an−1 + 2an−2.

If an satisfies the system then we must have

a0 = C20 + D(−1)0

a1 = C21 + D(−1)1

This yields the system {
C + D = 1
2C −D = 8

Solving this system to find C = 3 and D = −2. Hence, an = 3 · 2n − 2(−1)n.

Exercise 342
Find an explicit formula for the Fibonacci sequence

{
a0 = a1 = 1
an = an−1 + an−2
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Solution.
The roots of the characteristic equation

t2 − t− 1 = 0

are t = 1−√5
2 and t = 1+

√
5

2 . Thus,

an = C(
1 +

√
5

2
)n + D(

1−√5
2

)n

is a solution to
an = an−1 + an−2.

Using the values of a0 and a1 we obtain the system
{

C + D = 1
C( 1+

√
5

2 ) + D( 1−√5
2 ) = 1.

Solving this system to obtain

C =
1 +

√
5

2
√

5
and D = −1−√5

2
√

5
.

Hence,

an =
1√
5
(
1 +

√
5

2
)n+1 − 1√

5
(
1−√5

2
)n+1

Next, we discuss the case when the characteristic equation has a single root.

Theorem 26
Let A and B be real numbers and suppose that the characteristic equation

t2 −At−B = 0

has a single root r. Then the sequences {1, r, r2, · · ·} and {0, r, 2r2, 3r3, · · · , nrn, · · ·}
both satisfy the recurrence relation

an = Aan−1 + Ban−2.

Proof.
Since r is a root to the characteristic equation then the sequence {1, r, r2, · · ·}
is a solution to the recurrence relation

an = Aan−1 + Ban−2.

Now, since r is the only solution to the characteristic equation then

(t− r)2 = t2 −At−B.



4.5. RECURSION 107

This implies that A = 2r and B = −r2. Let sn = nrn, n ≥ 0. Then

Asn−1 + Bsn−2 = A(n− 1)rn−1 + B(n− 2)rn−2

= 2r(n− 1)rn−1 − r2(n− 2)rn−2

= 2(n− 1)rn − (n− 2)rn

= nrn = sn

So sn is a solution to an = Aan−1 + Ban−2.

Exercise 343
Find an explicit formula for

{
a0 = 1, a1 = 3
an = 4an−1 − 4an−2, n ≥ 2

Solution.
Solving the characteristic equation

t2 − 4t + 4 = 0

we find the single root r = 2. Thus,

an = C2n + Dn2n

is a solution to the equation an = 4an−1− 4an−2. Since a0 = 1 and a1 = 3 then
we obtain the following system of equations:

{
C = 1

2C + 2D = 3

Solving this system to obtain C = 1 and D = 1
2 . Hence, an = 2n + n

2 2n.

Exercise 344
Let A1, A2, · · · , An be subsets of a set S.
a. Give a recursion definition for ∪n

i=1Ai.
b. Give a recursion definition for ∩n

i=1Ai.
Solution.
a. ∪1

i=1Ai = A1 and ∪n
i=1Ai = (∪n−1

i=1 Ai) ∪An, n ≥ 2.
b. ∩1

i=1Ai = A1 and ∩n
i=1Ai = (∩n−1

i=1 Ai) ∩An, n ≥ 2.

Exercise 345
Use mathematical induction to prove the following generalized De Morgan’s law.

(∪n
i=1Ai)c = ∩n

i=1A
c
i

Solution.
Basis of induction: (∪1

i=1Ai)c = Ac
i = ∩1

i=1A
c
i .
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Induction hypothesis: Suppose that (∪n
i=1Ai)c = ∩n

i=1A
c
i .

Induction step: We must show that (∪n+1
i=1 Ai)c = ∩n+1

i=1 Ac
i . Indeed,

(∪n+1
i=1 Ai)c = ((∪n

i=1Ai) ∪An+1)c

= (∪n
i=1Ai)c) ∩Ac

n+1

= (∩n
i=1A

c
i ) ∩Ac

n+1

= ∩n+1
i=1 Ac

i

Exercise 346
Let a1, a2, · · · , an be numbers.
a. Give a recursion definition for

∑n
i=1 ai.

b. Give a recursion definition for Πn
i=1ai.

Solution.
a.

∑1
i=1 ai = a1 and

∑n
i=1 ai = (

∑n−1
i=1 ai) + an, n ≥ 2.

b. Π1
i=1ai = a1 and Πn

i=1ai = (Πn−1
i=1 ai) · an, n ≥ 2.

Exercise 347
A function is said to be defined recursively or to be a recursive function if
its rule of definition refers to itself. Define the factorial function recursively.
Solution.

{
f(0) = 1
f(n) = nf(n− 1), n ≥ 1.

Exercise 348
Let G : IN → ZZ be the relation given by

G(n) =





1, if n = 1
1 + G(n

2 ), if n is even
G(3n− 1), if n > 1 is odd

Show that G is not a function.
Solution.
Assume that G is a function so that G(5) exists. Listing the first five values of
G we find

G(1) = 1
G(2) = 2
G(3) = G(8) = 1 + G(4) = 2 + G(2) = 4
G(4) = 1 + G(2) = 3
G(5) = G(14) = 1 + G(7)

= 1 + G(20)
= 2 + G(10)
= 3 + G(5)

But the last equality implies that 0 = 3 which is impossible. Hence, G does not
define a function.
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Review Problems

Exercise 349
Find the first four terms of the following recursively defined sequence:

{
v1 = 1, v2 = 2

vn = vn−1 + vn−2 + 1, n ≥ 3

Exercise 350
Prove each of the following for the Fibonacci sequence:
a. F 2

k − F 2
k−1 = FkFk+1 − Fk+1Fk−1, k ≥ 1.

b. F 2
k+1 − F 2

k − F 2
k−1 = 2FkFk−1, k ≥ 1.

c. F 2
k+1 − F 2

k = Fk−1Fk+2, k ≤ 1.
d. Fn+2Fn − F 2

n+1 = (−1)n for all n ≥ 0.

Exercise 351
Find limn→∞

Fn+1
Fn

where F0, F1, F2, · · · is the Fibonacci sequence. (Assume that
the limit exists.)

Exercise 352
Define x0, x1, x2, · · · as follows:

xn =
√

2 + xn−1, x0 = 0.

Find limn→∞ xn.

Exercise 353
a. Make a list of all bit strings of lengths zero, one, two, three, and four that
do not contain the pattern 111.
b. For each n ≥ 0 let dn = the number of bit strings of length n that do not
contain the bit pattern 111. Find d0, d1, d2, d3, and d4.
c. Find a recurrence relation for d0, d1, d2, · · ·
d. Use the results of (b) of (c) to find the number of bit strings of length five
that do not contain the pattern 111.

Exercise 354
Find a formula for each of the following sums:

a. 1 + 2 + · · ·+ (n− 1), n ≥ 2.
b. 3 + 2 + 4 + 6 + 8 + · · ·+ 2n, n ≥ 1.
c. 3 · 1 + 3 · 2 + 3 · 3 + · · · 3 · n, n ≥ 1.

Exercise 355
Find a formula for each of the following sums:
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a. 1 + 2 + 22 + · · ·+ 2n−1, n ≥ 1.
b. 3n−1 + 3n−2 + · · ·+ 32 + 3 + 1, n ≥ 1.
c. 2n + 3 · 2n−2 + 3 · 2n−3 + · · ·+ 3 · 22 + 3 · 2 + 3, n ≥ 1.
d. 2n − 2n−1 + 2n−2 − 2n−3 + · · ·+ (−1)n−1 · 2 + (−1)n, n ≥ 1.

Exercise 356
Use iteration to guess a formula for the following recusively defined sequence
and then use mathematical induction to prove the validity of your formula:
c1 = 1, cn = 3cn−1 + 1, for all n ≥ 2.

Exercise 357
Use iteration to guess a formula for the following recusively defined sequence
and then use mathematical induction to prove the validity of your formula:
w0 = 1, wn = 2n − wn−1, for all n ≥ 2.

Exercise 358
Determine whether the recursively defined sequence: a1 = 0 and an = 2an−1 +
n− 1 satisfies the explicit formula an = (n− 1)2, n ≥ 1.

Exercise 359
Which of the following are second-order homogeneous recurrence relations with
constant coefficients?

a. an = 2an−1 − 5an−2.
b. bn = nbn−1 + bn−2.
c. cn = 3cn−1 · c2

n−2.
d. dn = 3dn−1 + dn−2.
e. rn = rn−1 − rn−2 − 2.
f. sn = 10sn−2.

Exercise 360
Let a0, a1, a2, · · · be the sequence defined by the explicit formula

an = C · 2n + D, n ≥ 0

where C and D are real numbers.
a. Find C and D so that a0 = 1 and a1 = 3. What is a2 in this case?
b. Find C and D so that a0 = 0 and a1 = 2. What is a2 in this case?

Exercise 361
Let a0, a1, a2, · · · be the sequence defined by the explicit formula

an = C · 2n + D, n ≥ 0

where C and D are real numbers. Show that for any choice of C and D,

an = 3an−1 − 2an−2, n ≥ 2.
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Exercise 362
Let a0, a1, a2, · · · be the sequence defined by the explicit formula

{
a0 = 1, a1 = 2

an = 2an−1 + 3an−2, n ≥ 2

Find an explicit formula for the sequence.

Exercise 363
Let a0, a1, a2, · · · be the sequence defined by the explicit formula

{
a0 = 1, a1 = 4

an = 2an−1 − an−2, n ≥ 2

Find an explicit formula for the sequence.

Exercise 364
The triangle inequality for absolute value states that for all real numbers a and
b, |a + b| ≤ |a|+ |b|. Use the recursive definition of summation, the triangle in-
equality, the definition of absolute value, and mathematical induction to prove
that for all positive integers n, if a1, a2, · · · , an are real numbers then

|
n∑

k=1

ak| ≤
n∑

k=1

|ak|.

Exercise 365
Use the recursive definition of union and intersection to prove the following gen-
eral distributive law: For all positive integers n, if A and B1, B2, · · · , Bn are sets
then

A ∩ (∪n
k=1Bk) = ∪n

k=1(A ∩Bk).

Exercise 366
Use mathematical induction to prove the following generalized De Morgan’s law.

(∩n
i=1Ai)c = ∪n

i=1A
c
i

Exercise 367
Show that the relation F : IN → ZZ given by the rule

F (n) =





1 if n = 1.
F (n

2 ) if n is even
1− F (5n− 9) if n is odd and n > 1

does not define a function.
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4.6 Project VII: Applications to Relations

Part I: Relational Database

The ”bi” in binary relation R refers to the fact that R is a subset of the carte-
sian product of two sets. Let A1, A2, · · · , An be given sets. If R is a subset of
A1 ×A2 × · · · ×An then we call R an n-ary relation. An n-ary relation can be
represented by a table or a set of ordered n-tuples.

Example
ID# Name Position Age
22012 Johnsonbaugh c 22
93831 Glover of 24
58199 Battey p 18
84341 Cage c 30
01180 Homer lb 37
26710 Score p 22
61049 Johnsonbaugh of 30
39826 Singleton 2b 31

A database is a collection of records that are manipulated by a computer.
Database management systems are programs that help users access the
information in databases. The relational database model is based on the
concept of an n-ary relation.
When an n-ary relation is represented by a table then the columns in this table
are called attributes. In the above table, the attributes are ID Number, Name,
Position, and Age. A single attribute or a combination of attributes for a rela-
tion is called a key if the values of the attributes uniquely define an n-tuple. For
example, in the above table, we can take the attribute ID Number as a key since
every person has a unique identification number. The attribute Name is not a
key because different persons can have the same name. For the same reason,
we cannot take the attribute Age as a key. A database management system
responds to queries. A query is a request for information from the database.
For example, ”Find all persons that are 22 years old”.

Exercise 368
a. Express the above 4-ary as a set of 4-tuples.
b. Answer the query: PLAYER[Name]
c. Answer the query: PLAYER[Name, Position]

Part II: Representing a Relation by a Matrix.

Let A be a set with n elements and R be a binary relation on A. Define the
n× n matrix M(R) = (mij) as follows:

mij =
{

1 if (ai, bj) ∈ R
0 if (ai, bj) 6∈ R
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If the numbers on the main diagonal of M(R) are all equal to 1 then R is re-
flexive. If M(R)T = M(R), where M(R)T is the transpose of M(R), then the
relation R is symmetric. If mij = 0 or mji = 0 for i 6= j then R is antisymmet-
ric.

Exercise 369
Let A = {1, 2, 3} and R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. Find
M(R) and use it to determine if the relation R is reflexive, symmetric or anti-
symmetric.

Part III: Cryptology
An important application to congruences is cryptology, which is the study of
secret messages.

(a) The process of making a message secret is called encryption. This process
consists of assigning the alphabet A,B, C, · · · , Z by the integers 0, 1, 2, · · · , 25.
Then the encrypted version of the message, the letter represented by p is re-
placed with the letter represented by the remainder of the division of (p+3) by
26.

Exercise 370
What is the encrypted message produced from the message ”MEET YOU IN
THE PARK”?

(b) Decryption is the process of determining the original message. In this
case the letter represented by p is replaced by the letter represented by the
remainder of the division of (p− 3) by 26.

Exercise 371
What is the message produced from the encrypted message ”PHHW BRX LQ
WKH SDUN”?

4.7 Project VIII: Well-Ordered Sets and Lat-
tices

Let [A,≤] be a poset. Let B ⊆ A. An element b ∈ B is called a least element
of B if and only if b ≤ x for all x ∈ B. If x ≥ b for all x ∈ B then we call b the
greatest element of B.

Exercise 372
Consider the set IN with the inequality relation ≤ . Let B = {2, 4, 5, 6, 7, 8, 9}.
What is the least element of B? What is the greatest element of B?
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A poset [A,≤] is said to be well-ordered if and only if ≤ is a total order
and every subset of A has a least element.

Exercise 373
a. Show that (IN,≤) is well-ordered.
b. Show that (ZZ,≤) is not well-ordered.

An element a ∈ A is called a lower bound of B if a ≤ x for all x ∈ B.
We call a ∈ A an upper bound of B if x ≤ a for all x ∈ B. Note that a lower
bound or an upper bound is not unique.

Exercise 374
Consider the poset [IN,≤]. Let B = {2, 4, 8, 10}. Find a lower bound of B as
well as an upper bound.

The greatest element of the set of lower bounds of B is called the greatest
lower bound, in symbol g.l.b(B). The least upper bound of the set of upper
bounds of B is called the least upper bound, in symbol l.u.b(B).

Exercise 375
Consider the poset [IR,≤] and B = (−1, 1). Find g.l.b(B) and l.u.b(B).

A lattice is a poset [A,≤] such that every pair of elements in A have a l.u.b
and g.l.b in A.

Exercise 376
Show that [IR,≤] is a lattice.

Exercise 377
Let A = {2, 3, 4, 9, 12, 18} and R be the binary relation ”divides” on A. Show
that [A,R] is not a lattice.

4.8 Project IX: The Pigeonhole Principle

The Pigeonhole principle asserts that if n pigeons fly into k holes with n > k
then some of the pigeonholes contain at least two pigeons. The reason this
statement is true can be seen by arguing by contradiction. If the conclusion
is false, each pigeonhole contains at most one pigeon and, in this case, we can
account for at most k pigeons. Since there are more pigeons than holes, we have
a contradiction.

Exercise 378
Ten persons have first names George, William, and Laura and last names Bush,
Perry, and Gramm. Show that at least two persons have the same first and last
names.
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A mathematical way to formulate the pigeonhole principle is given by the fol-
lowing exercise

Exercise 379
Let S be a finite set and {A1, A2, · · · , An} be a partition of S. Use the method
of contradiction to show that there is an index 1 ≤ i ≤ n such that |Ai| ≥ |S|

n .

One can uses the previous exercise to solve the following exercise.

Exercise 380
Let S and T be two finite sets such that |S| > k|T | where k is a positive inte-
ger. Show that for any function f : S → T there is a t ∈ T such that the set
{s ∈ S : f(s) = t} has more than k elements.
Hint: Show that the family At = {s ∈ S : f(s) = t}, where t ∈ T, partitions S
into n sets with n ≤ |T |. Then apply the previous exercise.

As a consequence of the above exercise we have

Exercise 381
If S and T are finite sets such that |S| > |T | then any function f : S → T is not
one-to-one.

4.9 Project X: Countable Sets

We say that two sets have the same cardinality if and only if there is a bi-
jective function between them. A set A is called countably infinite if and
only if A has the same cardinality as the set IN∗ of positive integers. A set A
is called countable if it is either finite or countably infinite. A set that is not
countable is said to be uncountable. Examples of uncountable sets are IR and
the intervals in IR..
The purpose of this project is to look at some countably infinite sets.

Exercise 382
Show that the function f : IN∗ → IN given by f(n) = n − 1 is a bijective func-
tion. Thus, IN is countably infinite.

Exercise 383
Show that the function f : IN∗ → ZZ defined by

f(n) =
{

n
2 if n is even

1−n
2 if n is odd

is bijective. Hence, ZZ is countably infinite.

Exercise 384
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Show that the function f : ZZ → 2ZZ defined by f(n) = 2n is a bijective function.
Hence, the set of even integers is countably infinite.

Exercise 385
Show that the set of rational numbers IQ is countably infinite. (Hint:
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4.10 Project XI: Finite-State Automaton

A finite-state machine can be looked at as a mathematical model that can ac-
cept input, store and process information and produce output. Examples include
digital computers, compilers, vending machines, coin changers, telephones, and
elevators.
This model has an input/output unit, and, consequently, has a way of commu-
nicating with the world using a set of symbols. Let I be the set of input symbols
and O, the set of output symbols. In the case of an elevator I might be up,
down, and floor selection, while O might be stops on particular floors. Besides
input and output symbols, there is a set of states S for our model. A state
is like a snapshot of what is happening in the machine at a particular instant.
An elevator might be in a state of going down to the first floor to pick up a
passenger or in a state of stopping on the third floor on the way up to the fifth
floor. There are always an intial state of our model, denoted by s0, and final or
accepting state(s).
Also, our model has a function, called the next state function. This function
returns the next state based on the present state and input. For instance, if
the elevator is in the state of moving up to the fifth floor and has an input of
someone pressing the down button on the third floor, it goes to a state that
says,” Remember, when coming back down from stopping and picking someone
on the third floor.”
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The above discussion is formalized as follows:
A finite-state automaton A consists of five objects:
1. a set I, called the input alphabet, of input symbols;
2. a set O, called the output alphabet, of output symbols;
3. a set S of states the machine can be in;
4. a subset of S whose elements are called accepting states;
5. a next-state function or transition function N : S × I → S. If s ∈ S and
m ∈ I then N(s,m) is the state to which A goes if m is input to A when A is
in state s. The initial state of the machine is s0.

The operation of a finite-state machine is commomly described by a diagram
called a transition diagram. The edges labeled with inputs and nodes with
states. A double circle stands for the final or accepting state(s).

Exercise 386
Consider the finite-state automaton defined by the transition diagram

0
s s s

21

0 1

1

0

s
 30

s
4

0,1

0,1

1

a. What are the elements of S?
b. What are the input symbols?
c. What is the initial state?
d. What are the accepting states?
e. Find N(s3, 1) and N(s3, 0).

Let A be a finite-state automaton with input alphabet I. Let I∗ be the set
of all words with letters from I. A word w ∈ I∗ is said to be accepted by A if,
and only if, A goes to an accepting state when the symbols of w are input to A
in sequence starting when A is in its initial state. The language accepted by
A, denoted by L(A), is the set of all words that are accepted by A.



118 CHAPTER 4. RELATIONS AND FUNCTIONS

Exercise 387
Consider the finite-state automaton defined by the following transition diagram

os s
1

0

1

s2

1

0,1

0

a. To what states does A go if the symbols of the following words are in-
put to A in sequence starting from the initial state?
(i) 1101 (ii) 0011 (iii) 0101010.
b. Which of the words in part (a) send A to an accepting state?
c. Show that L(A) = {0(10)n : n ≥ 0} where (10)n = 1010 · · · with n copies of
10 juxtaposed into one word.

Let A be a finite-state automaton with input alphabet I and states S. Let
N∗ : S × I∗ → S be the function defined as follows: N∗(s, w) is the state to
which A goes if the symbols of w are input to A in sequence starting when A is
in state s. We call N∗ the eventual -state function.

Exercise 388
A finite-state automaton A, given by the transition diagram below, has transi-
tion function N and eventual-state functioin N∗.

s
0

s

ss

3

1 2

01

1

0

1 0

1

0

a. Find N(s2, 0) and N(s1, 0).
b. Find N∗(s2, 11010) and N∗(s0, 01000).
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Exercise 389
Design a finite-state machine that recognizes words of the form 01, 011, 0111, 01111, · · · .
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Chapter 5

Introduction to the
Analysis of Algorithms

Informally, an algorithm is any well-defined computational procedure that
takes a set of values as input and produces a set of values as output.
The subject of the analysis of algorithms consists of the study of efficiency of
algorithms. Two aspects of the algorithm efficiency are: the amount of time
required to execute the algorithm and the memory space it consumes. In this
chapter we introduce the basic techniques for calculating time efficiency.

5.1 Time Complexity and O-Notation

The primary efficiency criterion for analyzing the efficiency of an algorithm is
the running time of the algorithm as a function of the number of values it
processes. The running time of an algorithm is not measured by counting the
minutes and seconds for the algorithm written in a particular language and
running on a particular machine. Rather it is defined to be an estimate of the
number of operations performed by the algorithm given a particular number of
input values.
Generally, given an algorithm that performs a task, we will be interested in
estimating the running time as a function of the problem size. For example, let
us consider the sequential search of an item X from a list of n items. Here,
we say that the problem size is n. Let T (n) be a measure of the time required
to execute an algorithm of problem size n. We call T (n) the time complexity
function of the algorithm. If n is sufficiently small then the algorithm will
not have a long running time. Thus, the interesting question is:”How fast T (n)
increases as n increases?” This is called the asymptotic behavior of the time
complexity function.
In our time analysis we will restrict ourselves to the worst case behavior of an
algorithm; that is, the longest running time for any input of size n.
Since we are considering asymptotic efficiency of algorithms, basically we will be

121
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focusing on the leading term of T (n). For example, if T (n) = 4n3 − 2n2 + n + 5
then T (n) = n3(4− 2

n + 1
n + 5

n ) and for large n we have T (n) ∼ n3. We say that
T (n) has a growth of order n3.
We say that one algorithm is more efficient then another if its worse case run-
ning time has a lower order of growth.

Exercise 390
Estimate the time complexity of the following algorithm:

i := 1
p := 1
for i := 1 to n

p := p · i
i := i + 1
next i
Solution.
Prior to entering the loop, it takes two assignment statements to initialize the
variables i and p. The loop is executed n times, and each time it executes the
two assignment statements in the body of the loop with a total of two arithmetic
operations. Thus, the time complexity of the algorithm is given by

T (n) = 4n + 2

so the growth is of order n.

Exercise 391
What is the run-time complexity based on n for the following program sege-
ment:

for i := 1 To n
for j := 1 To n

A(i,j) := x
next j

next i
Solution.
The inner loop is executed n times and the outer loop also is executed n times.
Hence, T (n) = n2 so that the growth is of order n2.

In the above two problems we found a precise expression for the time com-
plexity of the algorithm. What usually interests us is the order of growth. We
next introduce some of the concepts of growth orders. Let g : IN → IR. We
define the set

O(g(n)) = {f(n) : there exists positive constants n0 and C such that
|f(n)| ≤ C|g(n)|, for n ≥ n0}.

We say that a function f is order at most g or f big-oh of g if and only if
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f(n) ∈ O(g(n)). Sometimes We write f(n) = O(g(n)). Graphically, this means
that for n ≥ n0 the graph of f is below the graph of g.

Exercise 392
Show that the time complexity found in Exercise 390 is O(n).
Solution.
To show that T (n) = O(n) we must produce constants C and n0 such that
T (n) ≤ Cn for n ≥ n0. Indeed, T (n) ≤ 5n for n ≥ 2 so that n0 = 2 and C = 5.

Exercise 393
Show that the run-time complexity based on n for the following program sege-
ment is O(n2).

s := 0
for i := 1 To n

for j := 1 To i
s := s + j · (i− j + 1)

next j
next i
Solution.
Prior to entering the loop there is one assignment statement. Now, there are
two additions, one subtraction, one multiplication and one assignment for each
iteration of the inner loop. The total number of time the inner loop is executed
is

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

Hence, T (n) = 5 · n(n+1)
2 + 1 ≤ 5n2, n ≥ 1 so that C = 5 and n0 = 1. Hence,

T (n) ∈ O(n2).

We say that a function f is of polynomial complexity if and only if f ∈ O(np)
for some p ∈ IN. If p = 0 then we say that f is of constant complexity. If p = 1
we say that the complexity is linear.

Exercise 394
Show that

1 + 2 + 3 + · · ·+ n = O(n2).

Solution.
Indeed, since n ≥ 1 then

1 + 2 + 3 + · · ·+ n ≤ n + n + n + · · ·+ n = n2

so that C = 1 and n0 = 1.

Exercise 395
Show that n3 6∈ O(n2).
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Solution.
We proceed by contradiction. Suppose that n3 ∈ O(n2). Then there exist con-
stants C and n0 such that n3 ≤ Cn for all n ≥ n0. Dividing through by n2 to
obtain n ≤ C. This leads to a contradiction since the left-hand side can be made
as large as we please whereas the right-hand side is constant.

Exercise 396
Show that if f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f(n) ∈ O(h(n)).
Solution.
Since f(n) ∈ O(g(n)) then there exist n1 and C1 such that |f(n)| ≤ C1|g(n)| for
all n ≥ n1. Similarly, there exist constants C2 and n2 such that |g(n)| ≤ C2|h(n)|
for all n ≥ n2. Let n0 = max{n1, n2} and C = C1C2. Then for n ≥ n0 we have

|f(n)| ≤ C1|g(n)| ≤ C1C2|h(n)| = C|h(n)|

Exercise 397
Suppose we want to arrange the elements of a one dimensional array a[1], a[2], · · · , a[n]
in increasing order. An insertion sort compares every pair of elements, switch-
ing the values of those that are out of order, a[i− 1] > a[i].
a. How many possible pairs are compared?
b. What is the maximum number of exchanges?
c. What time the complexity of this algorithm in the worst case?
d. Is this a polynomial-time algorithm?
Solution.
a. The number of possible pairs to compare in the algorithm is

1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
.

b. From part a. it follows that the maximum number of exchanges is n(n−1)
2 .

c. T (n) = n(n−1)
2 .

d. For n ≥ 1, T (n) ≤ n2

2 so that T (n) ∈ O(n2).

Next, we recall the following definition from calculus. If L = limx→∞ f(x)
then for any ε > 0 there is a positive integer N such that |f(x)− L| < ε when-
ever n ≥ N.
Using this definition, we have the following important theorem.

Theorem 27
Suppose that limn→∞

f(n)
g(n) = L with L ≥ 0. Then f(n) ∈ O(g(n)). Moreover,

a. if L > 0 then g(n) ∈ O(f(n)), and
b. if L = 0 then g(n) 6∈ O(f(n)).

Proof.
Let ε = 1. Then there is a positive integer n0 such that | f(n)

g(n) −L| < 1 whenever

n ≥ n0. This implies that | f(n)
g(n) | < 1 + L for n ≥ n0. Hence, |f(n)| < C|g(n)|



5.1. TIME COMPLEXITY AND O-NOTATION 125

where C = (1 + L) and n ≥ n0. But this is just saying that f(n) ∈ O(g(n)).
a. Now, suppose that L > 0. Then limn→∞

g(n)
f(n) = 1

L . Interchange the roles of f

and g in the previous argument to find that |g(n)| < C|f(n)| where C = 1 + 1
L

and n ≥ n0 for some positive integer n0. Hence, g(n) ∈ O(f(n)).
b. Now suppose that L = 0. We use contradiction to show that g(n) 6∈ O(f(n)).
So suppose that g(n) ∈ O(f(n)). Then there exist positive constants C and M1

such that |g(n)| ≤ C|f(n)| for all n ≥ M1. On the other hand, by letting ε = 1
C

we can find a positive integer M2 such that | f(n)
g(n) | < ε whenever n ≥ M2. Let

n0 = max{M1,M2}. Then for n ≥ n0 we have

C < | g(n)
f(n)

| ≤ C

which is a contradiction. Hence, we must have g(n) 6∈ O(f(n)).

Review Problems

Exercise 398
Find the worst case running time of the following segment of an algorithm:
for i := 1 to n

for j := 1 to b i+1
2 c

a := (n− i) · (n− j)
next j

next i

Exercise 399
Find the worst case running time of the following segment of an algorithm:

for i := 1 to n
for j := 1 to 2n

for k := 1 to n
x := i · j · k

next k
next j

next i

Exercise 400
Construct a table showing the result of each step when insertion sort is applied
to the array a[1] = 6, a[2] = 2, a[3] = 1, a[4] = 8, a[5] = 4.

Exercise 401
How many comparisons actually occur when insertion sort is applied to the ar-
ray of the previous exercise?

Exercise 402
Selection sort is another algorithm for arranging the elements of a one-dimensional
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array a[1], a[2], · · · , a[n] in increasing order. The sorting works by selecting the
smallest item in the list, moving it to the front of the list, and then finding the
smallest of the remaining items and moving it to the second position in the list,
and so on. When two items in the list, say a[k] and a[m], have to be inter-
changed, we write switch(a[k], a[m]). The following is the selection algorithm:

for i := 1 to n− 1
min := i
for j := i + 1 to n

if a[min] > a[j] then
switch(a[min], a[i])

next j
next i

Construct a table showing the result of each step when selection sort is ap-
plied to the array a[1] = 5, a[2] = 3, a[3] = 4, a[4] = 6, a[5] = 2.

Exercise 403
How many comparisons actually occur when selection sort is applied to the ar-
ray of the previous exercise?

Exercise 404
Show that b√nc ∈ O(

√
n).

Exercise 405
Show that

12 + 22 + · · ·+ n2 ∈ O(n3).

Exercise 406
Show that

13 + 23 + · · ·+ n3 ∈ O(n4).

Exercise 407
a. Use mathematical induction to show that

1
1
3 + 2

1
3 + · · ·+ n

1
3 ≤ n

4
3

for all n ≥ 1.
b. What can you conclude from part (a) about the order of the above sum?

5.2 Logarithmic and Exponential Complexities

In this section we assume that the reader is familiar with the definitions and
rules of both exponential and logarithmic functions. Unless explicitly stated, all
logarithms in this chapter are to base 2 mainly because of the following theorem

Theorem 28
For any a > 1, O(loga n) = O(log2 n).
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Proof.
We must show that there exist constants C1, C2 and n0 such that loga n ≤
C1 log2 n and log2 n ≤ C2 loga n for all n ≥ n0. By the change of bases formula
we have

loga n =
log2 n

log2 a
.

Now, let C1 = 1
log2 a , C2 = log2 a, and n0 = 1.

If f(n) ∈ O(log2 n) we say that f(n) has logarithmic complexity. A func-
tion f(n) is said to be of exponential complexity if and only if f(n) ∈ O(an)
for some a > 1.

Exercise 408
Show that n + n log2 n ∈ O(n log2 n).
Solution.
Since limn→∞ n

n log2 n = 0 then there is a positive integer n0 such that n <

n log2 n for all n ≥ n0. Thus,n + n log2 n < 2nlog2n = Cn log2 n, n ≥ n0. This
shows that n + n log2 n ∈ O(n log2 n).

Exercise 409
a. Show that n! = O(nn).
b. Show that n = O(2n).
c. Use b. to show that log2 n = O(n).
Solution.
a. Since n− i ≤ n for 0 ≤ i ≤ n then

n! = n(n− 1)(n− 2) · · · 2 · 1
≤ n · n · n · · ·n · n = nn

It follows that n! = O(nn).
b. We show by induction on n ≥ 0 that n ≤ 2n.

Basis of induction: For n = 0 we have 0 ≤ 20.
Induction hypothesis: Suppose that n ≤ 2n.
Induction step: We must show that n + 1 ≤ 2n+1. Indeed,

n + 1 ≤ n + n
≤ 2n + 2n = 2n+1

Hence, n = O(2n).
c. Take the logarithm of both sides of b. to obtain log2 n ≤ n, n ≥ 1. That is,
log2 n = O(n).

Exercise 410
a. Show that log2 n! = O(n log2 n).
b. Show that n log2 n = O(log2 n!).
Solution.
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a. We have shown that n! = O(nn). That is, n! ≤ nn for n ≥ 1. Take logarithm
of both sides to obtain log2 n! ≤ n log2 n. That is, log2 n! = O(n log2 n).
b. It is easy to see that (n− i)(i + 1) ≥ n for all 0 ≤ i ≤ n− 1. In this case

(n!)2 = [n · (n− 1) · · · 2 · 1][1 · 2 · · · (n− 1) · n]
= (n · 1)[(n− 1) · 2] · · · [2 · (n− 1)](1 · n)
≥ n · n · · ·n · n
= nn.

Now take the logarithm of both sides to obtain n log2 n ≤ 2 log2 n!. That is,
n log2 n = O(log2 n!).

Exercise 411
a. Show that if f1(n) ∈ O(g(n)) and f2(n) ∈ O(g(n)) then f1(n) + f2(n) ∈
O(g(n)).
b. Show that if f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then f1(n) · f2(n) ∈
O(g1(n) · g2(n)).
c. Use a. and b. to show that

3n log2 n! + (n2 + 3) log2 n = O(n2 log2 n).

Solution.
a. Since f1(n) ∈ O(g(n)) then there exist n1 and C1 such that |f1(n)| ≤ C1|g(n)|
for all n ≥ n1. Similarly, there exist constants C2 and n2 such that |f2(n)| ≤
C2|g(n)| for all n ≥ n2. Let n0 = max{n1, n2} and C = C1 + C2. Then for
n ≥ n0 we have

|f1(n) + f2(n)| ≤ C1|g(n)|+ C2|g(n)| = C|g(n)|.
b. Now since f1(n) ∈ O(g1(n)) then there exist n1 and C1 such that |f1(n)| ≤
C1|g1(n)| for all n ≥ n1. Similarly, there exist constants C2 and n2 such that
|f2(n)| ≤ C2|g2(n)| for all n ≥ n2. Let n0 = max{n1, n2} and C = C1 ·C2. Then
for n ≥ n0 we have

|f1(n) · f2(n)| ≤ C|g1(n)g2(n)|.
c. Using b. above and a. of the previous exercise we have 3n log2 n! =
O(n2 log2 n). Since (n2 + 3) log2 n = O(n2 log2 n) then by a. and b. the re-
sult follows.

Review Problems

Exercise 412
Show that 1 + 2 + 22 + · · ·+ 2n ∈ O(2n+1).

Exercise 413
Show that 2n

3 + 2n
32 + 2n

33 + · · ·+ 2n
3n ∈ O(n).
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Exercise 414
Show that n2 + 2n ∈ O(2n).

Exercise 415
a. Show that 1

2 + 1
3 + · · ·+ 1

n ≤ ln n, n ≥ 2.
b. Use part a. to show that for n ≥ 3

1 +
1
2

+ · · ·+ 1
n
≤ ln n.

c. Use b. to show that n + n
2 + n

3 + · · ·+ n
n ∈ O(n ln n).

Exercise 416
Show that 2n ∈ O(n!).

5.3 Θ- and Ω-Notations

The O-notation asymptotically bounds a function from above. When we have
bounds from above and below, we use Θ notation. For a given function g(n), we
denote by Θ(g(n)) to be the set of all functions f such that there exist positive
constants C1, C2, and n0 such that C1|g(n)| ≤ |f(n)| ≤ C2|g(n)| for all n ≥ n0.
If f ∈ Θ(g(n)) we write f(n) = Θ(g(n)).

Exercise 417
Show that 1

2n2 − 3n = Θ(n2).
Solution.
Let C1 and C2 be positive constants such that

C1n
2 ≤ 1

2
n2 − 3n ≤ C2n

2.

This is equivalent to

C1 ≤ 1
2
− 3

n
≤ C2.

Since 1
2 − 3

n ≤ 1
2 for all n ≥ 1 then we choose C2 ≥ 1

2 . Since 1
2 − 3

n ≥ 1
4 for all

n ≥ 12 then we choose C1 ≤ 1
4 . Finally, we choose n0 = 12.

Exercise 418
Show that 6n3 6= Θ(n2).
Solution.
We use the argument by contradiction. Suppose that 6n3 = Θ(n2). Then there
exist positive constants C1, C2 and n0 such that

C1n
2 ≤ 6n3 ≤ C2n

2

for all n ≥ n0. The right-hand side inequality yields 6n ≤ C2 for n ≥ n0.
This says that the left-hand side can be made as large as we want whereas the
right-hand side is fixed. A contradiction.
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Theorem 29
For given two functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) =
O(g(n)) and g(n) = O(f(n)).

Proof.
Suppose that f(n) = Θ(g(n)). Then there exist positive constants C1, C2, and
n0 such that C1|g(n)| ≤ |f(n)| ≤ C2|g(n)| for all n ≥ n0. The left-hand side
inequality implies that g(n) = O(f(n)) whereas the right-hand side inequality
implies that f(n) = O(g(n)). Now go backward for the converse.

Just as O provides an asymptotic upper bound on a function, Ω−notation
provides an asymptotic lower bound. For a given function g(n), let Ω(g(n))
denote the set of all funtions f(n) such that there exist positive constants C
and n0 such that C|g(n)| ≤ |f(n)| for all n ≥ n0. For f(n) ∈ Ω(g(n)) we write
f(n) = Ω(g(n)).

Exercise 419
Show that log2 n! = Ω(n log2 n).
Solution.
Since (n!)2 ≥ nn for all n ≥ 1 then n log2 n ≤ 2 log2 n!. That is, 1

2n log2 n ≤
log2 n! for n ≥ 1. This says that log2 n! = Ω(n log2 n).

Theorem 30
For given two functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) =
O(g(n)) and f(n) = Ω(g(n)).

Proof.
Suppose first that f(n) = Θ(g(n)). Then there exist positive constants C1, C2

and n0 such that C1|g(n)| ≤ |f(n)| ≤ C2|g(n)| for n ≥ n0. The right-hand side
inequality implies that f(n) = O(g(n)) whereas the left-hand side inequality
implies that f(n) = Ω(g(n)).
Conversely, suppose that f(n) = O(g(n)) and f(n) = Ω(g(n)). Then there ex-
ist constants C1, C2, n1 and n2 such that |f(n)| ≤ C2|g(n)| for n ≥ n2 and
C1|g(n)| ≤ |f(n)| for n ≥ n1. Let n0 = max{n1, n2}. Then for n ≥ n0 we have
C1|g(n)| ≤ |f(n)| ≤ C2|g(n)|. That is, f(n) = Θ(g(n)).

Exercise 420
Let f(n) and g(n) be two given functions. We say that f(n) = o(g(n)) if and
only if limn→∞

f(n)
g(n) = 0.

a. Show that if f(n) = o(g(n)) then f(n) = O(g(n)).
b. Find two functions f(n) and g(n) such that f(n) = O(g(n) but f(n) 6=
o(g(n)).
Solution.
a. Suppose that f(n) = o(g(n)). Then there is a positive integer n0 such
that | f(n)

g(n) | ≤ 1 for n ≥ n0. That is, |f(n)| ≤ |g(n)| for all n ≥ n0. Hence,
f(n) = O(g(n)).
b. Let f(n) = 2n2 and g(n) = n2.



Chapter 6

Fundamentals of Counting
and Probability Theory

The major goal of this chapter is to establish several techniques for counting
large finite sets without actually listing their elements. Also, the fundamentals
of probablity theory are discussed.

6.1 Elements of Counting

For a set X, |X| denotes the number of elements of X. It is easy to see that for
any two sets A and B we have the following result known as the Inclusion -
Exclusion Principle

|A ∪B| = |A|+ |B| − |A ∩B|.
Indeed, |A| gives the number of elements in A including those that are common
to A and B. The same holds for |B|. Hence, |A|+ |B| includes twice the number
of common elements. Hence, to get an accurate count of the elements of A∪B,
it is necessary to subtract |A ∩B| from |A|+ |B|.
Note that if A and B are disjoint then |A ∩B| = 0 and consequently |A∪B| =
|A|+ |B|.

Exercise 421(The Addition Rule)
Show by induction on n, that if {A1, A2, · · · , An} is a collection of pairwise
disjoint sets then

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|.

Solution.
Basis of induction: For n = 2 the result holds by the Inclusion-Exclusion Prin-
ciple.

131
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Induction hypothesis: Suppose that for any collection {A1, A2, · · · , An} of pair-
wise disjoint sets we have

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|.

Induction step: Let {A1, A2, · · · , An, An+1} be a collection of pairwise disjoint
sets. Since (A1 ∪A2 ∪ · · · ∪An) ∩An+1 = (A1 ∩An+1) ∪ · · · ∪ (An ∩An+1) = ∅
then by the Inclusion-Exclusion Principle and the induction hypothesis we have

|A1 ∪A2 ∪ · · · ∪An ∪An+1| = |A1 ∪A2 ∪ · · · ∪An|+ |An+1|
= |A1|+ |A2|+ · · ·+ |An|+ |An|

Exercise 422
A total of 35 programmers interviewed for a job; 25 knew FORTRAN, 28 knew
PASCAL, and 2 knew neither languages. How many knew both languages?
Solution.
Let A be the group of programmers that knew FORTRAN, B those who knew
PASCAL. Then A ∩B is the group of programmers who knew both languages.
By the Inclusion-Exclusion Principle we have

|A ∪B| = |A|+ |B| − |A ∩B|.

That is,
33 = 25 + 28− |A ∩B|.

Solving for |A ∩B| we find |A ∩B| = 20.
Another important rule of counting is the multiplication rule. It states that
if a decision consists of k steps, where the first step can be made in n1 different
ways, the second step in n2 ways, · · · , the kth step in nk ways, then the decision
itself can be made in n1n2 · · ·nk ways.

Exercise 423
a. How many possible outcomes are there if 2 distinguishable dice are rolled?
b. Suppose that a state’s license plates consist of 3 letters followed by four
digits. How many different plates can be manufactured? (no repetitions)
Solution.
a. By the multiplication rule there are 6× 6 = 36 possible outcomes.
b. By the multiplication rule there are 26 × 25 × 24 × 10 × 9 × 8 × 7 possible
license plates.

Exercise 424
Let Σ = {a, b, c, d} be an alphabet with 4 letters. Let Σ2 be the set of all words
of length 2 with letters from Σ. Find the number of all words of length 2 where
the letters are not repeated. First use the product rule. List the words by means
of a tree diagram.
Solution.
By the multiplication rule there are 4× 3 = 12 different words. Constructing a
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tree diagram

. . . .
a b dc

b c d a c d a b d a b c

we find that the words are

{ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc}

An r-permutation of n objects, in symbol P (n, r), is an ordered selection
of r objects from a given n objects.

Exercise 425
a. Use the product rule to show that P (n, r) = n!

(n−r)! .

b. Find all possible 2-permutations of the set {1, 2, 3}.
Solution.
a. We can treat a permutation as a decision with r steps. The first step can be
made in n different ways, the second in n−1 different ways, ..., the rth in n−r+1
different ways. Thus, by the multiplication rule there are n(n−1) · · · (n− r +1)
r-permutations of n objects. That is, P (n, r) = n(n−1) · · · (n− r +1) = n!

(n−r)! .

b. P (3, 2) = 3!
(3−2)! = 6.

Exercise 426
How many license plates are there that start with three letters followed by 4
digits (no repetitions)?
Solution.
P (26, 3) · P (10, 4) = 78, 624, 000.

An r-combination of n objects, in symbol C(n, r), is an unordered selection
of r of the n objects. Thus, C(n, r) is the number of ways of choosing r objects
from n given objects without taking order in account. But the number of dif-
ferent ways that r objects can be ordered is r!. Since there are C(n, r) groups
of r objects from a given n objects then the number of ordered selection of r
objects from n given objects is r!C(n, r) = P (n, r). Thus

C(n, r) =
P (n, r)

r!
=

n!
r!(n− r)!

.

Exercise 427
In how many different ways can a hand of 5 cards be selected from a deck of 52
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cards?(no repetition)
Solution.
C(52, 5) = 2, 598, 960.

Exercise 428
Prove the following identities:
a. C(n, 0) = C(n, n) = 1 and C(n, 1) = C(n, n− 1) = n.
b. Symmetry property: C(n, r) = C(n, n− r), r ≤ n.
c. Pascal’s identity: C(n + 1, k) = C(n, k − 1) + C(n, k), n ≥ k.
Solution.
a. Follows immediately from the definition of of C(n, r).
b. Indeed, we have

C(n, n− r) = n!
(n−r)!(n−n+r)!

= n!
r!(n−r)!

= C(n, r)

c.
C(n, k − 1) + C(n, k) = n!

(k−1)!(n−k+1)! + n!
k!(n−k)!

= n!k
k!(n−k+1)! + n!(n−k+1)

k!(n−k)!

= n!
k!(n−k+1)! (k + n− k + 1)

= (n+1)!
(n+1−k)! = C(n + 1, k)

Pascal’s identity allows one to construct the following triangle known as Pascal’s
triangle (for n = 5) as follows

1
1 → 1
1 → 2 → 1
1 → 3 → 3 → 1
1 → 4 → 6 → 4 → 1

The following theorem provides an expension of (x+y)n where n is a nonnegative
integer.

Theorem 31 (Binomial Theorem)
Let x and y be variables, and let n be a positive integer. Then

(x + y)n =
n∑

k=0

C(n, k)xn−kyk

where C(n, k) is called the binomial coefficient.

Proof.
The proof is by induction.
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Basis of induction: For n = 1 we have

(x + y)1 =
1∑

k=0

C(1, k)x1−kyk = x + y.

Induction hypothesis: Suppose that the theorem is true for n.
Induction step: Let us show that it is still true for n + 1. That is

(x + y)n+1 =
n+1∑

k=0

C(n + 1, k)xn−k+1yk.

Indeed, we have

(x + y)n+1 = (x + y)(x + y)n = x(x + y)n + y(x + y)n

= x

n∑

k=0

C(n, k)xn−kyk + y

n∑

k=0

C(n, k)xn−kyk

=
n∑

k=0

C(n, k)xn−k+1yk +
n∑

k=0

C(n, k)xn−kyk+1

= C(n, 0)xn+1 + C(n, 1)xny + C(n, 2)xn−1y2

+ · · ·+ C(n, n)xyn + C(n, 0)xny

+ C(n, 1)xn−1y2 + · · ·+ C(n, n− 1)xyn

+ C(n, n)yn+1

= C(n + 1, 0)xn+1 + C(n + 1, 1)xny + C(n + 1, 2)xn−1y2

+ · · ·+ C(n + 1, n)xyn + C(n + 1, n + 1)yn+1

=
n+1∑

k=0

C(n + 1, k)xn−k+1yk.

Exercise 429
Expand (x + y)6 using the binomial theorem.
Solution.
By the Binomial Theorem and Pascal’s triangle we have

(x + y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

Exercise 430
a. Show that

∑n
k=0 C(n, k) = 2n.

b. Show that
∑n

k=0(−1)kC(n, k) = 0.
Solution.
a. Letting x = y = 1 in the binomial theorem we find

2n = (1 + 1)n =
n∑

k=0

C(n, k).
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b. This follows from the binomial theorem by letting x = 1 and y = −1

Review Problems

Exercise 431
a. How many ways can we get a sum of 4 or a sum of 8 when two distinguishable
dice are rolled?
b. How many ways can we get a sum of 8 when two undistinguishable dice are
rolled?

Exercise 432
a. How many 4-digit numbers can be formed using the digits, 1, 2, · · · , 9 (with
repetitions)? How many can be formed if no digit can be repeated?
b. How many different license plates are there that involve 1, 2, or 3 letters
followed by 4 digits (with repetitions)?

Exercise 433
a. In how many ways can 4 cards be drawn, with replacement, from a deck of
52 cards?
b. In how many ways can 4 cards be drawn, without replacement, from a deck
of 52 cards?

Exercise 434
In how many ways can 7 women and 3 men be arranged in a row if the three
men must always stand next to each other.

Exercise 435
A menu in a Chinese restaurant allows you to order exactly two of eight main
dishes as part of the dinner special. How many different combinations of main
dishes could you order?

Exercise 436
Find the coefficient of a5b7 in the binomial expansion of (1− 2b)12.

Exercise 437
Use the binomial theorem to prove that

3n =
n∑

k=0

2kC(n, k).

6.2 Basic Probability Terms and Rules

Probability theory is one of the serious branch of mathematics with applications
to many sciences, namely the theory of statistics. This section introduces the



6.2. BASIC PROBABILITY TERMS AND RULES 137

most basic ideas of probabiltiy.
An experiment is any operation whose outcomes cannot be predicted with cer-
tainty. The sample space S of an experiment is the set of all possible outcomes
for the experiment. For example, if you roll a die one time then the experiment
is the roll of the die. A sample space for this experiment is S = {1, 2, 3, 4, 5, 6}
where each digit represents a face of the die.
An event is any subset of a sample space. Thus, if S is the sample space then
the collection of all possible events is the power set P(S).
The Probability of an event E is the measure of occurrence of E. It is a
number between 0 and 1. If the event is impossible to occur then its probability
is 0. If the occurrence is certain then the probability is 1. The closer to 1 the
probability is, the more likely the event is. The probability of occurrence of an
event E (called its success) will be denoted by P (E). Thus, 0 ≤ P (E) ≤ 1. If
an event has no outcomes, that is as a subset of S if E = ∅ then P (∅) = 0. On
the other hand, if E = S then P (S) = 1.

Exercise 438
Which of the following numbers cannot be the probability of some event? (a)
0.71 (b)−0.5 (c) 150% (d) 4

3 .
Solution.
(a) Yes. (b) No. Since the number is negative. (c) No since the number is
greater than 1. (d) No.

Various probability concepts exist nowadays. The classical probability con-
cept applies only when all possible outcomes are equally likely, in which case
we use the formula

P (E) =
number of outcomes favorable to event

total number of outcomes
=
|E|
|S| ,

where |E| is the number of elements in E.

Exercise 439
What is the probability of drawing an ace from a well-shufled deck of 52 playing
cards?
Solution.
P (Ace) = 4

52 = 1
13 .

Exercise 440
What is the probability of rolling a 3 or a 4 with a fair die?
Solution.
P (3 or 4) = 2

6 = 1
3 .

A major shortcoming of the classical probability concept is its limited appli-
cability, for there are many situations in which the various outcomes cannot all
regarded as equally likely. This would be the case, for instance, when we wonder
whether a person will get a raise or when we want to predict the outcome of an



138CHAPTER 6. FUNDAMENTALS OF COUNTING AND PROBABILITY THEORY

election. A widely used probability concept is the estimated probability which
uses the relative frequency of an event and is given by the formula:

P (E) = Relative frequency =
f

n
,

where f is the frequency of the event and n is the size of the sample space.

Exercise 441
Records show (over a period of time) that 468 of 600 jets from Dallas to Phoenix
arrived on time. Estimate the probability that any one jet from Dallas to
Phoenix will arrive on time.
Solution.
P (E) = f

n = 468
600 = 39

50

We define the probability of nonoccurrence of an event E (called its failure) by
the formula

P (Ec) = 1− P (E).

Note that
P (E) + P (Ec) = 1.

Exercise 442
The probability that a college student without a flu shot will get the flu is 0.45.
What is the probability that a college student without the flu shot will not get
the flu?
Solution.
The probability is 1− 0.45 = .55.

Next, we discuss some of the rules of probability. The union of two events
A and B is the event A ∪ B whose outcomes are either in A or in B. The
intersection of two events A and B is the event A ∩ B whose outcomes are
outcomes of both events A and B. Two events A and B are said to be mutually
exclusive if they have no outcomes in common. In this case A ∩B = ∅.

Exercise 443
If A and B are mutually exclusive then what is P (A ∩B)?
Solution.
P (∅) = 0.

Theorem 32
For any events A and B the probability of A ∪B is given by the addition rule

P (A ∪B) = P (A) + P (B)− P (A ∩B).

If A and B are mutually exclusive then by Exercise 443 the above formula reduces
to

P (A ∪B) = P (A) + P (B).
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Proof.
By the Inclusion-Inclusion Principle we have

|A ∪B| = |A|+ |B| − |A ∩B|.

Thus,
P (A ∪B) = |A∪B|

|S|
= |A|

|S| + |B|
|S| − |A∩B|

|S|
= P (A) + P (B)− P (A ∩B).

Exercise 444
For any event E of a sample space S show that P (E) =

∑
x∈E P (x).

Solution.
This follows from the previous theorem

Exercise 445
M&M plain candies come in a variety of colors. According to the manufacturer,
the color distribution is:
(a) Orange: 15% (b) Green: 10% (c) Red: 20% (d) Yellow: 20% (e) Brown:
30% (f) Tan: 5%.
Suppose you have a large bag of plain candies and you reach in and take one
candy at random. Find

1. P(orange candy Or tan candy). Are these outcomes mutually exclusive?

2. P(not brown candy).

Solution.
1. P(orange candy Or tan candy) = .15 + .05 = .2 = 20%. The outcomes are
mutually exclusive.
2. P(not brown candy) = 1− .3 = .7 = 70%

Exercise 446
If A is the event ”drawing an ace” from a deck of cards and B is the event
”drawing a spade”. Are A and B mutually exclusive? Find P (A ∪B).
Solution.
The events are not mutually exclusive since there is an ace that is also a spade.

P (A ∪B) = P (A) + P (B)− P (A ∩B) =
4
13

+
13
52
− 1

52
= 31%

Now, given two events A and B belonging to the same sample space S. The
conditional probability P (A|B) denotes the probability that event A will
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occur given that event B has occurred. It is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.

Exercise 447
Consider the experiment of tossing two dice. What is the probability that the
sum of two dice equals six given that the first die is a four?
Solution.
The possible outcomes of our experiment are

{(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}.

Thus, the probability that the sum is six given that the first die is four is 1
6 .

Assuming that the experiment consists of tossing the two dice then by letting
B be the event that the first die is 4 and A be the even that the sum of the two
dice is 6 then

P (A|B) =
P (A ∩B)

P (B)
=

1
36
6
36

=
1
6

If P (A|B) = P (A), we say that the two events A and B are independent.
That is, the occurrence of A is independent whether or not B occurs. If two
events are not independent, we say that they are dependent.

Exercise 448
Show that A and B are independent if and only if

P (A ∩B) = P (A) · P (B).

Solution.
Suppose that A and B are independent. Then P (A) = P (A|B) = P (A∩B)

P (B) .

That is, P (A∩B) = P (A) · P (B). Conversely, if P (A∩B) = P (A) · P (B) then
P (A|B) = P (A∩B)

P (B) = P (A).

Exercise 449
You roll two fair dice: a green one and a red one.
a. Are the outcomes on the dice independent?
b. Find P(5 on green die and 3 on red die).
c. Find P(3 on green die and 5 on red die).
d. Find P((5 on green die and 3 on red die) or (3 on green die and 5 on red
die)).
Solution.
a. Yes.
b. P(5 on green die and 3 on red die) = 1

6 · 1
6 = 1

36 .
c. P(3 on green die and 5 on red die) = 1

36 .
d. P((5 on green die and 3 on red die) or (3 on green die and 5 on red die)) =
1
36 + 1

36 = 1
18 .
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Exercise 450
Show that

P (B|A) =
P (B) · P (A|B)

P (A)
.

Solution.
This follows from the fact that P (A∩B) = P (B∩A) and the formula of P (A|B)
given above.

Exercise 451
Prove Bayes’ Theorem

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

Solution.
Note first that {Ac ∩B,A ∩B} form a partition of B. Thus,

P (B) = P (A ∩B) + P (Ac ∩B).

Now by the previous exercise we have

P (A|B) = P (A)·P (B|A)
P (B)

= P (B|A)P (A)
P (B|A)P (A)+P (B|Ac)P (Ac)

Exercise 452
Consider two urns. The first contains two white and seven black balls and the
second contains five white and six black balls. We flip a fair coin and then draw
a ball from the first urn or the second urn depending on whether the outcome
was head or tail. What is the conditional probability that the outcome of the
toss was head given that a white ball was selected?
Solution.
Let W be the event that a white ball is drawn, and let H be the event that the
coin comes up heads. The desired probability P (H|W ) may be calculated as
follows:

P (H|W ) = P (H∩W )
P (W )

= P (W |H)P (H)
P (W )

= P (W |H)P (H)
P (W |H)P (H)+P (W |Hc)P (Hc)

=
2
9

1
2

2
9

1
2+ 5

11
1
2

= 22
67

It frequently occurs that in performing an experiment we are mainly interested
in some functions of the outcome as opposed to the outcome itself. For exam-
ple, in tossing dice we are interested in the sum of the dice and are not really
concerned about the actual outcome. These real-valued functions defined on
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the sample space are known as random variables. If the range is a finite sub-
set of IN then the random variable is called discrete. Otherwise, the random
variable is said to be continuous. Discrete random variable are usually the
result of a count whereas a continuous random variable is usually the result of
a measurement.
A probability distribution is a correspondence that assigns probabilities to
the values of a random variable. The graph of a probability distribution is called
is a histogram.

Exercise 453
Let f denote the random variable that is defined as the sum of two fair dice.
Find the probability distribution of f.
Solution.
P (f = 2) = P ({(1, 1)}) = 1

36 ,
P (f = 3) = P ({(1, 2), (2, 1)}) = 2

36 ,
P (f = 4) = P ({(1, 3), (2, 2), (3, 1)}) = 3

36 ,
P (f = 5) = P ({(1, 4), (2, 3), (3, 2), (4, 1)}) = 4

36 ,
P (f = 6) = P ({(1, 5, (5, 1), (2, 4), (4, 2), (3, 3)}) = 5

36 ,
P (f = 7) = P ({(1, 6), (6, 1), (2, 5), (5, 2), (4, 3), (3, 4)}) = 6

36 ,
P (f = 8) = P ({(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}) = 5

36 ,
P (f = 9) = P ({(3, 6), (6, 3), (4, 5), (5, 4)}) = 4

36 ,
P (f = 10) = P ({(4, 5), (5, 4), (5, 5)}) = 3

36 ,
P (f = 11) = P ({(5, 6), (6, 5)}) = 2

36 ,
P (f = 12) = P ({(6, 6)}) = 1

36 .

Exercise 454
Construct the histogram of the random variable of the previous exercise.
Solution.

1/36

2 3

2/36

4

 
3/36

5

4/36

6

5/36

7

6/36

8

5/36

9 10 11 12

4/36

3/36

2/36

1/36



6.2. BASIC PROBABILITY TERMS AND RULES 143

For a discrete random variable f we define the expected value ( or mean) of
f by the formula

E(f) =
∑

x∈S

f(x)P (x)

In other words, E(f) is a weighted average of the possible values that f can take
on, each value being weighted by the probability that f assumes that value.

Exercise 455
Find E(f) where f is the outcome when we roll a fair die.
Solution.
Since P (1) = P (2) = · · · = P (6) = 1

6 then

E(f) = 1(
1
6
) + 2(

1
6
) + · · ·+ 6(

1
6
) =

7
2

Another quantity of interest is the variance of a random variable f , denoted
by V ar(f), which is defined by

V ar(f) = E[(f − E(f))2].

In other words, the variance measures the expected square of the deviation of
f from its expected value. The standard deviation of a random variable f is
the quantity is defined to be the square root of the variance.

Exercise 456
Show that if f and g are random variables then E(f +cg) = E(f)+cE(g) where
c is a constant.
Solution.
Indeed,

E(f + cg) =
∑

x∈S(f + cg)(x)P (x)
=

∑
x∈S f(x)P (x) + c

∑
x∈S g(x)P (x)

= E(f) + cE(g)

Theorem 33

V ar(f) = E(f2)− (E(f))2.

Proof.
Indeed, using the previous exercise we have

V ar(f) = E(f2 − 2E(f)f + (E(f))2)
= E(f2)− 2E(f)E(f) + (E(f))2

= E(f2)− (E(f))2

Exercise 457
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Calculate V ar(f) when f represents the outcome when a fair die is rolled.
Solution.
First note that

E(f2) = (f(1))2P (1) + · · ·+ (f(6))2P (6) =
91
6

.

By the above theorem we have

V ar(f) = E(f2)− (E(f))2 =
91
6
− (

7
2
)2 =

35
12

Review Problems

Exercise 458
What is the probability of drawing a red card from a well- shuffled deck of 52
playing cards?

Exercise 459
If we roll a fair die, what are the probabilities of getting
a. a 1 or a 6;
b. an even number?

Exercise 460
A department store’s records show that 782 of 920 women who entered the store
on a saturday afternoon made at least one purchase. Estimate the probability
that a woman who enters the store on a Saturday afternoon will make at least
one purchase.

Exercise 461
Which of the following are mutually exclusive? Explain your answers.
a. A driver getting a ticket for speeding and a ticket for going through a red
light.
b. Being foreign-born and being President of the United States.

Exercise 462
If A and B are the events that a consumer testing service will rate a given stereo
system very good or good, P (A) = 0.22, P (B) = 0.35. Find
a. P (Ac);
b. P (A ∪B);
c. P (A ∩B).

Exercise 463
If the probabilities are 0.20, 0.15, and 0.03 that a student will get a failing grade
in Statistics, in English, or in both, what is the probability that the student will
get a failing grade in at least one of these subjects?
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Exercise 464
If the probability that a research project will be well planned is 0.60 and the
probability that it will be well planned and well executed is 0.54, what is the
probability that a well planned research project will be well executed?

Exercise 465
Given three events A, B, and C such that P(A)=0.50, P(B)=0.30, and P (A ∩
B) = 0.15. Show that the events A and B are independent.

Exercise 466
There are 16 equally likely outcomes by flipping four coins. Let f represent the
number of heads. Find the probability distribution and graph the corresponding
histogram.

6.3 Binomial Random Variables

In this section we discuss an important example of a discrete random variable.
Binomial experiments are problems that consist of a fixed number of trials
n, with each trial having exactly two possible outcomes: Success and failure.
The probability of a success is denoted by p = P (S) and that of a failure by
q = P (F ). Moreover, p and q are related by the formula

p + q = 1.

Also, we assume that the trials are independent, that is what happens to one
trial does not affect the probability of a success in any other trial. The cen-
tral question of a binomial experiment is to find the probability of r successes
out of n trials. Now, anytime we make selections from a population without
replacement, we do not have independent trials. For example, selecting a ball
from a box that contain balls of two different colors. If the selection is without
replacement then the trials are dependent.

Exercise 467
The registrar of a college noted that for many years the withdrawal rate from
an introductory chemistry course has been 35% each term. We wish to find the
probability that 55 students out of 80 will register for the course.

a. What makes a trial?
b. What is a success? a failure?
c. What are the values of n, p, q, r?
Solution.
a. The decision of each student to withdraw or complete the course can be
thought as a trial. Thus, there are a total of 80 trials.
b. S = completing the course, F = withdrawing from course.
c. n = 80, p = .65, q = .35, r = 55.



146CHAPTER 6. FUNDAMENTALS OF COUNTING AND PROBABILITY THEORY

Exercise 468
Harper’s Index states that 10% of all adult residents in Washington D.C., are
lawyers. For a random sample of 15 adult Washington, D.C., residents, we want
to find the probability that 3 are lawyers.

a. What makes a trial?
b. What is a success? a failure?
c. What are the values of n, p, q, r?
Solution.
a. A trial is whether an adult resident of Washington, D.C. is a lawyer or not.
b. S = being a lawyer, F = not being a lawyer.
c. n = 15, p = .1, q = .9, r = 3.

As mentioned earlier, the central problem of a binomial experiment is to find
the probability of r successes out of n independent trials. We next see how to
find these probabilities.
Recall from Section 6.1 the formula for finding the number of combinations of
n distinct objects taken r at a time

C(n, r) =
n!

r!(n− r)!
.

We call the number C(n, r) the binomial coefficient. One commonly used
procedure for finding these coefficients is by means of Pascal’s triangle.

Now, the probability of r successes out of n independent trials is given by the
binomial distribution formula

P (r) = C(n, r)prqn−r

where p = P (S) and q = P (F ) = 1− p. The validity of the above equation may
be verified by first noting that the probability of any particular sequence of the
n outcomes with r successes and n− r failures is, by the independence of trials,
pr(1−p)n−r. Since C(n, r) counts the number of outcomes that have r successes
and n− r failures then the equation above follows.

Exercise 469
Find the probability that in tossing a fair coin three times there will appear (a)
3 heads, (b)2 heads and 1 tail, (c) 2 tails and 1 head, and (d) 3 tails.
Solution.
a. C(3, 3)(.5)3(.5)3−3 = 1

8 .
b. P (2) = C(3, 2)(.5)2(.5) = 3

8 .
c. P (1) = C(3, 1)(.5)(.5)2 = 3

8 .
d. P (0) = C(3, 0)(.5)3 = 1

8

Exercise 470
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The probability that an entering college student will graduate is 0.4. Determine
the probability that out of 5 students (a) none, (b) 1, (c) at least 1, (d) all will
graduate.
Solution.
(a) C(5, 0)(.6)5.
(b) C(5, 1)(.4)(.6)4.
(c) 1− C(5, 0)(.6)5.
(d) C(5, 5)(.4)5.

Exercise 471
Find the probability of guessing correctly at least 6 of the 10 answers on a true-
false examination.
Solution.
P (6) + P (7) + P (8) + P (9) + P (10).

We next derive formulas for finding the expected value and standard deviation
for the binomial random variable.

Theorem 34
a. The mean of a binomial random variable is given by µ = np.
b. The variance of a binomial random variable is given by σ2 = npq.

Proof.
a. Using the definition of µ we have

µ =
∑n

i=0 iP (i)
=

∑n
i=1 iC(n, i)piqn−i

= np
∑n

i=1
n!

(i−1)!(n−i)p
i−1qn−i−1

= np
∑n−1

i=0 C(n− 1, i)piqn−1−i

= np(p + q)n−1 = np.

b. Note first that i2 = i(i− 1) + i. Then

E(X2) =
∑n

i=0 i2P (i)
=

∑n
i=0 i(i− 1)C(n, i)piqn−i + µ

=
∑n

i=2
n!

(n−i)!(i−2)!p
iqn−i + µ

= n(n− 1)p2
∑n

i=2
(n−2)!

(n−i)!(i−2)!p
iqn−i + µ

= n(n− 1)p2
∑n−2

j=0 C(n− 2, j)pjqn−2−j + µ

= n(n− 1)p2(p + q)n−2 + µ
= n(n− 1)p2 + µ

It follows that
σ2 = E(X2)− µ2

= n(n− 1)p2 + np− n2p2

= npq
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Review Problems

Exercise 472
At Community Hospital, the nursing staff is large enough so that 80% of the
time a nurse can respond to a room call within 3 minutes. Last night there were
73 room calls. We wish to find the probability nurses responded to 62 of them
within 3 minutes.

a. What makes a trial?
b. What is a success? a failure?
c. What are the values of n, p, q, r?

Exercise 473
Find the probability that in a family of 4 children there will be (a) at least 1
boy and (b) at least 1 boy and 1 girl. Assume that the probability of a male
birth is 1

2 .

Exercise 474
An insurance salesperson sells policies to 5 men, all of identical age and in good
health. According to the actuarial tables, the probability that a man of this
particular age will be alive 30 years is 2

3 . Find the probability that in 30 years
(a) all 5 men, (b) at least 3 men, (c) only 2 men, (d) none will be alive.



Chapter 7

Elements of Graph Theory
In this chapter we present the basic concepts related to graphs and trees such
as the degree of a vertex, connectedness, Euler and Hamiltonians circuits, iso-
morphisms of graphs, rooted and spanning trees.

7.1 Graphs, Paths, and Circuits

An undirected graph G consists of a set VG of vertices and a set EG of edges
such that each edge e ∈ EG is associated with an unordered pair of vertices,
called its endpoints.
A directed graph or digraph G consists of a set VG of vertices and a set EG of
edges such that each edge e ∈ EG is associated with an ordered pair of vertices.
We denote a graph by G = (VG, EG).
Two vertices are said to be adjacent if there is an edge connecting the two ver-
tices. Two edges associated to the same vertices are called parallel. An edge
incident to a single vertex is called a loop. A vertex that is not incident on any
edge is called an isolated vertex. A graph with neither loops nor parallel edges
is called simple graph.

Exercise 475
Consider the following graph G

.

.

.

.
. .

.v1

v2

v3

v4

v5

v6

v7
e6

e5

e1

e2

e3

e4

149
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a. Find EG and VG.
b. List the isolated vertices.
c. List the loops.
d. List the parallel edges.
e. List the vertices adjacent to v3..
f. Find all edges incident on v4.
Solution.
a. EG = {e1, e2, e3, e4, e5, e6} and VG = {v1, v2, v3, v4, v5, v6, v7}.
b. There is only one isolated vertex, v5.
c. There is only one loop, e5.
d. {e2, e3}.
e. {v2, v4}.
f. {e1, e4, e5}.

Exercise 476
Which one of the following graphs is simple.

a. b.

.

. .

. .
v1 v2

v3

v1

v2

Solution.
a. G is not simple since it has a loop and parallel edges.
b. G is simple.

A complete graph on n vertices, denoted by Kn, is the simple graph that
contains exactly one edge between each pair of distinct vertices.

Exercise 477
Draw K2,K3,K4, and K5.

Solution.
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. . . .
.

.
. .
. .

K K

K K

2 3

4
5

. .

. .

A graph in which the vertices can be partitioned into two disjoint sets V1 and
V2 with every edge incident on one vertex in V1 and one vertex of V2 is called
bipartite graph.

Exercise 478
a. Show that the graph G is bipartite..

.

.

.

.

v1

v2

v3

u
1

u2
b. Show that K3 is not bipartite.
Solution.
a. Clear from the definition and the graph.
b. Any two sets of vertices of K3 will have opposite parity. Thus, according to
the definition of bipartite graph, K3 is not bipartite.

A complete bipartite graph Km,n, is the graph that has its vertex set par-
titioned into two disjoint subsets of m and n vertices, respectively. Moreover,
there is an edge between two vertices if and only if one vertex is in the first set
and the other vertex is in the second set.

Exercise 479
Draw K2,3,K3,3.
Solution.
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.

.

.

.

.

.

.

.

.

.

.

u1

u2

v1

v2

v3

u1

u2

u3

v1

v2

v3

K2,3 K3,3

The degree of a vertex v in an undirected graph, in symbol deg(v), is the
number of edges incident on it. By definition, a loop at a vertex contributes
twice to the degree of that vertex. The total degree of G is the sum of the
degrees of all the vertices of G.

Exercise 480
What are the degrees of the vertices in the following graph

.
.

.
v1

v2

v3

e
1

e2

e3

Solution.
deg(v1) = 0, deg(v2) = 2, deg(v3) = 4.

Theorem 35
For any graph G = (VG, EG) we have

2|EG| =
∑

v∈V (G)

deg(v).

Proof.
Suppose that VG = {v1, v2, · · · , vn} and |EG| = m. Let e ∈ EG. If e is a loop
then it contributes 2 to the total degree of G. If e is not a loop then let vi and
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vj denote the endpoints of e. Then e contributes 1 to deg(vi) and contributes 1
to the deg(vj). Therefore, e contributes 2 to the total degree of G. Since e was
arbitrarily, this shows that each edge of G contributes 2 to the total degree of
G. Thus,

2|EG| =
∑

v∈V (G)

deg(v)

The following is easily deduced from the previous theorem.

Theorem 36
In any graph there are an even number of vertices of odd degree.

Proof.
Let G = (VG, EG) be a graph. By the previous theorem, the sum of all the
degrees of the vertices is T = 2|EG|, an even number. Let E be the sum of
the numbers deg(v), each which is even and O the sum of numbers deg(v) each
which is odd. Then T = E + O. That is, O = T − E. Since both T and E are
even then T is also even. This implies that there must be an even number of the
odd degrees. Hence, there must be an even number of vertices with odd degree.

Exercise 481
Find a formula for the number of edges in Kn.
Solution.
Since G is complete, each vertex is adjacent to the remaining vertices. Thus,
the degree of each of the n vertices is n− 1, and we have the sum of the degrees
of all of the vertices being n(n − 1). By Theorem 35, n(n − 1) = 2|EG|. This
completes a proof of the theorem

In an undirected graph G a sequence P of the form v0e1v1e2 · · · vn−1envn is
called a path of length n or a path connecting v0 to vn. If P is a path such
that v0 = vn then it is called a circuit or a cycle. A path or circuit is simple
if it does not contain the same edge more than once. A graph that does not
contain any circuit is called acyclic.

Exercise 482
In the graph below, determine whether the following sequences are paths, simple
paths, circuits, or simple circuits.
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.

.
.

. .

.

v

v

v

v

v

v

0

1

2

3 4

5

e

e

e
e

e

ee

e

e

1

10

8
6

5

42

3

7e
9

a. v0e1v1e10v5e9v2e2v1.
b. v3e5v4e8v5e10v1e3v2.
c. v1e2v2e3v1.
d. v5e9v2e4v3e5v4e6v4e8v5.
Solution.
a. a path (no repeated edge), not a simple path (repeated vertex v1), not a
circuit
b. a simple path
c. a simple circuit
d. a circuit, not a simple circuit (vertex v4 is repeated)

An undirected graph is called connected if there is a path between every pair
of distinct vertices of the graph. A graph that is not connected is said to be
disconnected.

Exercise 483
Determine which graph is connected and which one is disconnected.

.

. .
.

.
.

a.

.

. .
.

. .

. .

b.

v

v
v

v

v

v

v v

v

v

v v

v v1

2
3

4

5

6
1 3

2

4

5

8 7

6

Solution.
a. Connected.
b. Disconnected since there is no path connecting the vertices v1 and v4.
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A simple path that contains all edges of a graph G is called an Euler path. If
this path is also a circuit, it is called an Euler circuit.

Theorem 37
If a graph G has an Euler circuit then every vertex of the graph has even degree.

Proof.
Let G be a graph with an Euler circuit. Start at some vertex on the circuit and
follow the circuit from vertex to vertex, erasing each edge as you go along it.
When you go through a vertex you erase one edge going in and one edge going
out, or else you erase a loop. Either way, the erasure reduces the degree of the
vertex by 2. Eventually every edge gets erased and all the vertices have degree
0. So all vertices must have had even degree to begin with.

It follows from the above theorem that if a graph has a vertex with odd de-
gree then the graph can not have an Euler circuit.
The following provide a converse to the above theorem.

Theorem 38 (Euler Theorem)
If all the vertices of a connected graph have even degree, then the graph has an
Euler circuit.

Exercise 484
Show that the following graph has no Euler circuit.

.

. .

.
v

v
v

v

e

e

e

e

e e
e

1

2
3

4

7

3

2

1

5
64

Solution.
Vertices v1 and v3 both have degree 3, which is odd. Hence, by the remark
following the previous theorem, this graph does not have an Euler circuit.

A path is called a Hamiltonian path if it visits every vertex of the graph
exactly once. A circuit that visits every vertex exactly once except for the last
vertex which duplicates the first one is called a Hamiltonian circuit.
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Exercise 485
Find a Hamiltonian circuit in the graph

. .

.

. . x y

z

v

w

Solution.
vwxyzv

Exercise 486
Show that the following graph has a Hamiltonian path but no Hamiltonian cir-
cuit. .

.

. .

.

v

w

z

y

x

Solution.
vwxyz is a Hamiltonian path. There is no Hamiltonian circuit since no cycle
goes through v.

Review Problems

Exercise 487
The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The intersection of two graphs G1 = (V1, E1)
and G2 = (V2, E2) is the graph G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2).
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Find the union and the intersection of the graphs
. . .

. . .

. .

v

v

v v

v

v

v

v
v1

2

3

4

1
2 3

4
5

. .v
5

Exercise 488
Graphs can be represented using matrices. The adjacency matrix of a graph
G with n vertices is an n×n matrix AG such that each entry aij is the number
of edges connecting vi and vj . Thus, aij = 0 if there is no edge from vi to vj .
a. Draw a graph with the adjacency matrix




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




b. Use an adjacency matrix to represent the graph

. .

. .

a

b c

d

Exercise 489
A graph H = (VH , EH) is a subgraph of G = (VG, EG) if and only if VH ⊆ VG

and EH ⊆ EG.
Find all nonempty subgraphs of the graph
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.
v1

v2
e1

e2

.

When (u, v) is an edge in a directed graph G then u is called the initial vertex
and v is called the terminal vertex. In a directed graph, the in-degree of a
vertex v, denoted by deg−(v), is the number of edges with v as their terminal
vertex. Similarly, the out-degree of v, denoted by deg+(v), is the number of
edges with v as an initial vertex. Note that deg(v) = deg+(v) + deg−(v).

Exercise 490
Find the in-degree and out-degree of each of the vertex in the graph G with
directed edges.

.

.

. .

.v

v
v

v

2

1

3

5

v4

Exercise 491
Show that for a digraph G = (VG, EG) we have

|EG| =
∑

v∈V (G)

deg−(v) =
∑

v∈V (G)

deg+(v).

Another useful matrix representation of a graph is known as the incidence ma-
trix. It is constructed as follows. We label the rows with the vertices and the
columns with the edges. The entry for row v and column e is 1 if e is incident
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on v and 0 otherwise. If e is a loop at v we assign the value 2. It is easy to see
that the sum of entries of each column is 2 and that the sum of entries of a row
gives the degree of the vertex corresponding to that row.

Exercise 492
Find the incidence matrix corresponding to the graph

.

.

.

.
. .

.v1

v2

v3

v4

v5

v6

v7
e6

e5

e1

e2

e3

e4

Exercise 493
If each vertex of an undirected graph has degree k then the graph is called a
regular graph of degree k.
How many edges are there in a graph with 10 vertices each of degree 6?

Exercise 494
Two simple graphs G1 and G2 are isomorphic, in symbol, G1 ' G2, if there is
one-to-one onto function, f : V (G1) → V (G2) and AG1 = AG2 . Show that the
following graphs are isomorphic.

. .
. .

. .

. .v v

v v

u

u u

u

1 2

3 4

1 2

3 4

Warning: The number of vertices, the number of edges, and the degrees of
the vertices are all invariants under isomorphism. If any of these quantities
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differ in two graphs, these graphs cannot be isomorphic. However, when these
invariants are the same, it does not necessarily mean that the two graphs are
isomorphic.
The isomorphism between two graphs G1 = (VG1 , EG1) and G2 = (VG2 , EG2)
with parallel edges or loops requires two bijections f : VG1 → VG2 and g : EG1 →
EG2 such that if e ∈ EG1 is an edge with endpoints (u, v) then g(e) ∈ EG2 is an
edge with endpoints (f(u), f(v)).

Exercise 495
Show that the following graphs are not isomorphic.
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Exercise 496
Show that the following graph has no Hamiltonian path..

.

. .

..

a

b

d

fe

c

7.2 Trees

An undirected graph is called a tree if each pair of distinct vertices has exactly
one path. Thus, a tree has no parallel edges and no loops.
We next show a result that is needed for the proof of our first main theorem of
trees.
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Theorem 39
Any tree with more than one vertex has at least one vertex of degree 1.

Proof.
Let v0 and vn be two distinct vertices. Then there is a path connecting v0 to
vn. By the definition of a tree, there is only one edge incident on either v0 or
vn. Thus deg(v0) = deg(v1) = 1. .

The following is the first of the two main theorems about trees:

Theorem 40
A tree with n vertices has exactly n− 1 edges.

Proof.
The proof is by induction on n ≥ 1. Let P (n) be the property: Any tree with n
vertices has n− 1 edges.
Basis of induction: P (1) is valid since a tree with one vertex has zero edges.
Induction hypothesis: Suppose that P (n) holds up to n ≥ 1.
Induction Step: We must show that any tree with n + 1 vertices has n edges.
Indeed, let T be any tree with n + 1 vertices. Since n + 1 ≥ 2 then by the
previous theorem, T has a vertex v of degree 1. Let T0 be the graph obtained
by removing v and the edge attached to v. Then T0 is a tree with n vertices.
By the induction hypothesis, T0 has n− 1 edges and so T has n edges

Exercise 497
Which of the following graphs are trees?. .

. .

. .

. .

. .

. .

. .

. .

. .
Solution.
The first graph satisfies the definition of a tree. The second and third graphs
do not satisfy the conclusion of Theorem 40 and therefore they are not trees.

The second major theorem about trees is the following theorem whose proof
is omitted.

Theorem 41
Any connected graph with n vertices and n− 1 edges is a tree.

A rooted tree is a tree in which a particular vertex is designated as the root.
The level of a vetex v is the length of the simple path from the root to v. The
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height of a rooted tree is the maximum level number that occurs.

Exercise 498
Find the level of each vertex and the height of the following rooted tree.

.

..

. . . .

v

v

vvvv

v

1

2 3

4 5 6 7

bf Solution.
v1 is the root of the given tree.

vertex level
v2 1
v3 1
v4 2
v5 2
v6 2
v7 2

The height of the tree is 2.

Let T be a rooted tree with root v0. Suppose (v0, v1, · · · , vn) is a simple path in
T and x, y, z are three vertices. Then
(a) vn−1 is the parent of vn.
(b) v0, v1, · · · , vn−1 are the ancestors of vn.
(c) vn is the child of vn−1.
(d) If x is an ancestor of y then y is a descendant of x.
(e) If x and y are children of z then x and y are siblings.
(f) If x has no children, then x is a leaf.
(g) The subtree of T rooted at x is the graph with vertex V and edge set E,
where V is x together with the descendants of x and

E = {e|e is an edge on a simple path from x to some vertex in V }.
Exercise 499
Consider the rooted tree
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.
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. . . .
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10 11 12 13

a. Find the parent of v6.
b. Find the ancestors of v13.
c. Find the children of v3.
d. Find the descendants of v11.
e. Find an example of a siblings.
f. Find the leaves.
g. Construct the subtree rooted at v7.
Solution.
a. v2.
b. v1, v3, v7.
c. v7, v8, v9.
d. None.
e. {v2, v3, v4, v5}.
f. {v4, v5, v6, v9, v9, v10, v11, v12, v13}.
g. .

. . .

v

vvv

7

10 12 1311v
.

A binary tree is a rooted tree such that each vertex has at most two chil-
dren. Moreover, each child is designated as either a left child or a right child.
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Exercise 500
a. Show that the following tree is a binary tree..

. .
. .
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v1

b. Find the left child and the right child of vertex v5.
c. A full binary tree is a binary tree in which each vertex has either two
children or zero children. Construct an example of a full binary tree.
Solution.
a. Follows from the definition of a binary tree.
b. The left child is v6 and the right child is v7.
c. .

. .
.

. .

vv

v v

v

2 3

6 7

5

v1

.
v
4

Exercise 501
A forest is a simple graph with no circuits. Which of the following graphs is a
forest?
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.
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.

Solution.
The first graph is a forest whereas the second is not.

Exercise 502
a. Let T be a subgraph of a graph G such that T is a tree containing all of the
vertices of G. Such a tree is called a spanning tree. Find a spanning tree of
the following graph.

. .
. .
. .. .

a b

c d

e f

hg

b. The following algorithm finds a spanning tree. In this algorithm S denotes a
sequence. Let G be a connected graph with vertices ordered

v1, v2, , · · · , vn

1. Let T be the tree with root v1 and no edges.
2. Add to T all edges (v1, x) and vertices on which they are incident, provided
that (v1, x) deos not produce a circuit. If no edges can be added, stop (T is a
spanning tree)
3. Replace S by the children in T of S ordered consistently with the original
ordering. Go to step 2.
Use the above algorithm to find the spanning tree of part a.
Solution.
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Review Problems

Exercise 503
Find the level of each vertex and the height of the following rooted tree..

. .
.
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Exercise 504
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Consider the rooted tree .
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a. Find the parent of v6.
b. Find the ancestors of v10.
c. Find the children of v4.
d. Find the descendants of v1.
e. Find all the siblings.
f. Find the leaves.
g. Construct the subtree rooted at v1.

Exercise 505
The binary tree below gives an algorithm for choosing a restaurant. Each inter-
nal vertex asks a question. If we begin at the root, answer each question, and
follow the appropriate edge, we will eventually arrive at a terminal vertex that
chooses a restaurant. Such a tree is called a decision tree.

3 stars?

Y

Jimmy’s Place

N

Cheap?
Y

N

Afghan?

Polish?

N Y

Y

Senkowski’s Bakery
N

Aurelio’s Pizza
Helmand

Spanish?

N

Y

Cafe Royale

On the Tao

Construct a decision tree that sorts three given numbers a1, a2, a3 in ascending
order.

Exercise 506
A binary search tree is a binary tree T in which data are associated with the
vertices. The data are arranged so that, for each vertex v in T, each data item
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in the left subtree of v is less than the data item in v and each data item in
the right subtree of v is greater than the data item in v. Using numerical order,
form a binary search tree for a number in the set {1, 2, · · · , 15}.

Exercise 507
Procedures for systematically visiting every vertex of a tree are called traversal
algorithms. In the preorder traversal, the root r is listed first and then the
subtrees T1, T2, · · · , Tn are listed, from left to right, in order of their roots. The
preorder traversal begins by visiting r. It continues by traversing T1 in preorder,
thenT2 in preorder, and so on, until Tn is traversed in preorder. In which order
does a preorder traversal visit the vertices in the following rooted tree?.

. .
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r

v

u
w

x y z
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p q


