CSI 33 LECTURE NOTES (Ojakian)

Topic 5: Linked Lists

OUTLINE

(References: Ch 4, 11)

1. Linked Lists

2. Efficiency issues

1. <u>Linked List Introduction</u>

 (a) Empirical Timing of Programs on Insertion
PROBLEM 1. Experiment with the CPP program: array vs vector vs list. Why the difference in run times, expecially for the list class?

(b) Concept of Linked List

i. Define the data structure **PROBLEM 2.** Show a diagram for the linked list with the following data:

3, 4, 3, 1

ii. Search for an element: by data or index. **PROBLEM 3.**

- A. Show the steps for finding the 1.
- B. Show the steps for finding the item at position 2.
- iii. Insert an element (compare to array insertion)

PROBLEM 4.

- A. Use a diagram to show the steps for inserting a 2 after the 4.
- B. Use a diagram to show the steps for inserting a 5 at the beginning of the linked list, and at the end of the linked list.
- iv. Delete an element (compare to array deletion)

PROBLEM 5.

A. Use a diagram to show the steps for deleting the 4.

B. Use a diagram to show the steps for deleting the first and last elements.

2. Programming a Linked List

PROBLEM 6. In Python, write just a List Node class and use it to create the linked list 3, 4, 3, 1. Then do the above diagrammetic problems using Python.

PROBLEM 7. Write the code for a Linked List Class. Then repeat the above operations from the prior problems.

3. Theta Analysis: Linked List versus Array

PROBLEM 8. Do the theta analysis of searching in arrays versus linked lists: by data value and by index.

PROBLEM 9.

- (a) Do the theta analysis of insertion in arrays versus linked lists: consider where the insertion happens.
- (b) Do the theta analysis of **deletion** in arrays versus linked lists: consider where the deletion happens.
- 4. Programming a Linked List in C++

PROBLEM 10. In C++, write just a List Node class and use it to build a class and delete some elements, following example program.

5. Other Linked Structures

There are many other kinds of "Linked Structures"

- (a) Doubly Linked Lists. For example C++ list.
 - **PROBLEM 11.** Make a diagram of the list 3, 4, 3, 1 as a doubly linked list. Insertions and deletions? See homework!
- (b) Circularly Linked Lists: Cat has its tail ...
- (c) Trees can be: We'll see later ...