
Postfix Expression

Postfix Expression

• Infix expression is the form AOB
– A and B are numbers or also infix

expression
– O is operator (+, -, *, /)

• Postfix expression is the form ABO
– A and B are numbers or also postfix

expression
– O is operator (+, -, *, /)

From Postfix to Answer

• The reason to convert infix to postfix
expression is that we can compute the
answer of postfix expression easier by
using a stack.

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• First, push(10) into the

stack

10

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Then, push(2) into the

stack

2
10

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Push(8) into the stack

8
2
10

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Now we see an operator *,

that means we can get an
new number by calculation

8
2
10

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Now we see an operator *,

that means we can get an
new number by calculation

• Pop the first two numbers8
2
10

82 * = 16

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Now we see an operator *,

that means we can get an
new number by calculation

• Push the new number back
16
10

82 * = 16

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Then we see the next

operator + and perform
the calculation

16
10

1610 + = 26+

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• Then we see the next

operator + and perform
the calculation

• Push the new number back

26
1610 + = 26

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• We see the next number 3
• Push (3) into the stack

3
26

Compute the Answer

Ex: 10 2 8 * + 3 -
• The last operation

326 - = 23

From Postfix to Answer

Ex: 10 2 8 * + 3 -
• The last operation

answer!23
326 - = 23

From Postfix to Answer

• Algorithm: maintain a stack and scan the
postfix expression from left to right
– If the element is a number, push it into the

stack
– If the element is a operator O, pop twice

and get A and B respectively. Calculate
BOA and push it back to the stack

– When the expression is ended, the number
in the stack is the final answer

Transform Infix to Postfix

• Now, we have to design an algorithm to
transform infix expression to postfix

Transform Infix to Postfix
• Observation 1: The order of computation

depends on the order of operators
– The parentheses must be added according to

the priority of operations.
– The priority of operator * and / is higher then

those of operation + and –
– If there are more than one equal-priority

operators, we assume that the left one’s
priority is higher than the right one’s

• This is called left-to-right parsing.

Transform Infix to Postfix
• Observation 1: The order of computation

depends on the order of operators (cont.)
– For example, to add parentheses for the

expression 10 + 2 * 8 - 3,
– we first add parenthesis to 2 * 8 since its

priority is highest in the expression.
– Then we add parenthesis to 10 + (2 * 8) since

the priorities of + and – are equal, and + is on
the left of -.

– Finally, we add parenthesis to all the
expression and get ((10 + (2 * 8)) - 3).

Transform Infix to Postfix

• Observation 1: The order of
computation depends on the order of
operators (cont.)
– The computation order of expression ((10 +

(2 * 8)) - 3) is:
• 2 * 8 = 16 ((10 + 16) -3)
• 10 + 16 = 26 (26 – 3)
• 26 – 3 = 23 23

Transform Infix to Postfix

• Simplify the problem, how if there are
only +/- operators?

Transform Infix to Postfix

• Simplify the problem, how if there are
only +/- operators?

• The leftmost operator will be done first
– Ex: 10 - 2 + 3 8 + 3 11

Transform Infix to Postfix

• Simplify the problem, how if there are
only +/- operators?

• Algorithm: maintain a stack and scan the
postfix expression from left to right
– When we get a number, output it
– When we get an operator O, pop the top

element in the stack if the stack is not
empty and then push(O) into the stack

Transform Infix to Postfix
• Simplify the problem, how if there are

only +/- operators?
• Algorithm: maintain a stack and scan the

postfix expression from left to right
– When we get a number, output it
– When we get an operator O, pop the top

element in the stack if the stack is not
empty and then push(O) into the stack

– When the expression is ended, pop all the
operators remain in the stack

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the first number

10, output it

10

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the first operator

+, push(+) into the stack
because at this moment
the stack is empty

+
10

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the number 2,

output it

+
10 2

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the operator -, pop

the operator + and push(-)
into the stack

-
10 2 +

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the number 8,

output it

-
10 2 + 8

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the operator +,

pop the operator - and
push(+) into the stack

+
10 2 + 8 -

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We see the number 3,

output it

+
10 2 + 8 - 3

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• We come to the end of the

expression, then we pop all
the operators in the stack

10 2 + 8 – 3 +

Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3
• When we get an operator,

we have to push it into the
stack and pop it when we
see the next operator.

• The reason is, we have to
“wait” for the second
operand of the operator

Transform Infix to Postfix

• How to solve the problem when there
are operators +, -, *, / ?

Transform Infix to Postfix

• Observation 2: scan the infix expression
from left to right, if we see higher-
priority operator after lower-priority
one, we know that the second operand
of the lower-priority operator is an
expression
– Ex: a + b * c = a + (b * c) a b c * +
– That is, the expression b c * is the second

operand of the operator “+”

Transform Infix to Postfix

• So, we modify the algorithm to adapt
the situation

Transform Infix to Postfix

• Algorithm: maintain a stack and scan the
postfix expression from left to right
– When we get a number, output it
– When we get an operator O, pop the top

element in the stack until there is no
operator having higher priority then O and
then push(O) into the stack

– When the expression is ended, pop all the
operators remain in the stack

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the first number

10, output it

10

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the first operator

+, push it into the stack

+
10

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the number 2,

output it

+
10 2

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the operator *,

since the top operator in
the stack, +, has lower
priority then *, push(*)

*
+

10 2

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the number 8,

output it

*
+

10 2 8

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the operator -,

because its priority is lower
then *, we pop. Also, because +
is on the left of it, we pop +,
too. Then we push(-)

-
10 2 8 * +

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• We see the number 3,

output it

-
10 2 8 * + 3

Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3
• Because the expression is

ended, we pop all the
operators in the stack

10 2 8 * + 3 -

