Postfix Expression

Postfix Expression

- Infix expression is the form $A O B$
$-A$ and B are numbers or also infix expression
- O is operator (,,+- *, /)
- Postfix expression is the form $A B O$
$-A$ and B are numbers or also postfix expression
$-O$ is operator ($+,-, *, /$)

From Postfix to Answer

- The reason to convert infix to postfix expression is that we can compute the answer of postfix expression easier by using a stack.

From Postfix to Answer

Ex: $1028^{*}+3$ -

- First, push(10) into the stack

From Postfix to Answer

Ex: $1028^{*}+3$ -

- Then, push(2) into the stack

2
10

From Postfix to Answer

Ex: $1028^{*}+3-$

- Push(8) into the stack

8
2
10

From Postfix to Answer

Ex: $1028^{*}+3$ -

- Now we see an operator *, that means we can get an new number by calculation

From Postfix to Answer

Ex: $1028^{*}+3$ -

- Now we see an operator *, that means we can get an new number by calculation

From Postfix to Answer

Ex: $1028^{*}+3$ -

- Now we see an operator *, that means we can get an new number by calculation
- Push the new number back

From Postfix to Answer

Ex: $1028^{*}+3$ -

- Then we see the next operator + and perform the calculation

From Postfix to Answer

Ex: $1028^{*}+3-$

- Then we see the next operator + and perform the calculation
- Push the new number back

$$
10+16=26
$$

26

From Postfix to Answer

Ex: $1028^{*}+3$ -

- We see the next number 3
- Push (3) into the stack

Compute the Answer

Ex: $1028^{*}+3$ -

- The last operation

$$
26-3=23
$$

From Postfix to Answer

Ex: $1028^{*}+3-$

- The last operation

$$
26-3=23
$$

From Postfix to Answer

- Algorithm: maintain a stack and scan the postfix expression from left to right
- If the element is a number, push it into the stack
- If the element is a operator 0 , pop twice and get A and B respectively. Calculate BOA and push it back to the stack
- When the expression is ended, the number in the stack is the final answer

Transform Infix to Postfix

- Now, we have to design an algorithm to transform infix expression to postfix

Transform Infix to Postfix

- Observation 1: The order of computation depends on the order of operators
- The parentheses must be added according to the priority of operations.
- The priority of operator * and / is higher then those of operation + and -
- If there are more than one equal-priority operators, we assume that the left one's priority is higher than the right one's
- This is called left-to-right parsing.

Transform Infix to Postfix

- Observation 1: The order of computation depends on the order of operators (cont.)
- For example, to add parentheses for the expression $10+2$ * $8-3$,
- we first add parenthesis to 2 * 8 since its priority is highest in the expression.
- Then we add parenthesis to $10+(2$ * 8$)$ since the priorities of + and - are equal, and + is on the left of -.
- Finally, we add parenthesis to all the expression and get ((10 + (2 * 8)) - 3).

Transform Infix to Postfix

- Observation 1: The order of computation depends on the order of operators (cont.)
- The computation order of expression ((10 + $(2$ * 8$))-3$) is:
- 2 * $8=16$
- $10+16=26$
$\rightarrow((10+16)-3)$
- $26-3=23$
\rightarrow (26-3)
$\rightarrow 23$

Transform Infix to Postfix

- Simplify the problem, how if there are only +/- operators?

Transform Infix to Postfix

- Simplify the problem, how if there are only +/- operators?
- The leftmost operator will be done first
$-E x: 10-2+3 \rightarrow 8+3 \rightarrow 11$

Transform Infix to Postfix

- Simplify the problem, how if there are only +/- operators?
- Algorithm: maintain a stack and scan the postfix expression from left to right
- When we get a number, output it
- When we get an operator O, pop the top element in the stack if the stack is not empty and then push (O) into the stack

Transform Infix to Postfix

- Simplify the problem, how if there are only + /- operators?
- Algorithm: maintain a stack and scan the postfix expression from left to right
- When we get a number, output it
- When we get an operator O, pop the top element in the stack if the stack is not empty and then push (0) into the stack
- When the expression is ended, pop all the operators remain in the stack

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the first number 10, output it

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the first operator + , push(+) into the stack because at this moment the stack is empty 10

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the number 2, output it

102

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the operator -, pop the operator + and push(-) into the stack
$102+$

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the number 8 , output it

$102+8$

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the operator +, pop the operator - and push(+) into the stack
$102+8-$

Transform Infix to Postfix

Ex: $10+2-8+3$

- We see the number 3 , output it

$$
102+8-3
$$

Transform Infix to Postfix

Ex: $10+2-8+3$

- We come to the end of the expression, then we pop all the operators in the stack

$$
102+8-3+
$$

Transform Infix to Postfix

$$
E x: 10+2-8+3
$$

- When we get an operator, we have to push it into the stack and pop it when we see the next operator.
- The reason is, we have to "wait" for the second operand of the operator

Transform Infix to Postfix

- How to solve the problem when there are operators +, -, *, /?

Transform Infix to Postfix

- Observation 2: scan the infix expression from left to right, if we see higherpriority operator after lower-priority one, we know that the second operand of the lower-priority operator is an expression
$-E x: a+b^{*} c=a+\left(b^{*} c\right) \rightarrow a b c^{*}+$
- That is, the expression $b c^{*}$ is the second operand of the operator "+"

Transform Infix to Postfix

- So, we modify the algorithm to adapt the situation

Transform Infix to Postfix

- Algorithm: maintain a stack and scan the postfix expression from left to right
- When we get a number, output it
- When we get an operator 0 , pop the top element in the stack until there is no operator having higher priority then O and then push (0) into the stack
- When the expression is ended, pop all the operators remain in the stack

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the first number 10, output it

10

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the first operator + , push it into the stack

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the number 2 , output it

102

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the operator *, since the top operator in the stack, +, has lower priority then *, push(*)

102

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the number 8 , output it

1028

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the operator -, because its priority is lower
 then *, we pop. Also, because + is on the left of it, we pop +, too. Then we push(-)

$$
1028 \text { * + }
$$

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- We see the number 3, output it

$$
1028^{*}+3
$$

Transform Infix to Postfix

Ex: $10+2$ * $8-3$

- Because the expression is ended, we pop all the operators in the stack

$$
1028 \text { * + } 3-
$$

