CSI 33 LECTURE NOTES (Ojakian)
Topic 12: Sorting Algorithms

OUTLINE
(References: ch. 6, 13, 15)

. Sorting Algorithms

. The Goal: To Sort

Given an unordered list, produce an ordered list. Issues:

(a) Time complexity (worst and typical case)
(b) Space complexity
(c¢) Simplicity of algorithm

. Bubble Sort
(Not in book)

(a) From 19567 Worst case: n?. Average case: n?.

(b) On a pass through the list, swap pairs of out-of-order elements.

(c) Do repeated passes till nothing is swapped.

. Selection Sort
(Ch. 6)

(a) Worst case: n?. Average case: n?

(b) Find the smallest element and move it to the front (or into a different sublist).

i. If moved to a sublist, remove it from the original list

ii. If moved to the front, keep track of the boundary between the sorted sublist
and the unsorted orginal list

(c¢) Repeat till the sorted sublist contains all the elements.

. Heap Sort
(Ch. 13)

(a) From 19647 Worst case: nlogn. Average case: nlogn.
(b) Phase 1: Build a max heap as an array.

(c) Phase 2: Repeatedly remove the max element (at the the root) and put it in a
sorted sublist (similar issues to selection sort).



5. Merge Sort
(Ch. 6)

(a) From 19457 Worst case: nlogn. Average case: nlogn.
(b) Divide list in half

(¢) Recursively call MergeSort on each half

(d) Merge the two sorted halves.

6. Quick Sort
(Ch. 15.2)
(a) From 19617 Worst case: n?. Average case: nlogn
(b) Like MergeSort, but ...

(¢) Break up into less and more than the pivot

)

(d) Note: Still recursively do each half, but now do “in-place” movements, avoiding the
merge step.



