
CSI 33 LECTURE NOTES (Ojakian)

Topic 12: Sorting Algorithms

OUTLINE
(References: ch. 6, 13, 15)

1. Sorting Algorithms

1. The Goal: To Sort

Given an unordered list, produce an ordered list. Issues:

(a) Time complexity (worst and typical case)

(b) Space complexity

(c) Simplicity of algorithm

2. Bubble Sort

(Not in book)

(a) From 1956? Worst case: n2. Average case: n2.

(b) On a pass through the list, swap pairs of out-of-order elements.

(c) Do repeated passes till nothing is swapped.

3. Selection Sort

(Ch. 6)

(a) Worst case: n2. Average case: n2

(b) Find the smallest element and move it to the front (or into a different sublist).

i. If moved to a sublist, remove it from the original list

ii. If moved to the front, keep track of the boundary between the sorted sublist
and the unsorted orginal list

(c) Repeat till the sorted sublist contains all the elements.

4. Heap Sort

(Ch. 13)

(a) From 1964? Worst case: n log n. Average case: n log n.

(b) Phase 1: Build a max heap as an array.

(c) Phase 2: Repeatedly remove the max element (at the the root) and put it in a
sorted sublist (similar issues to selection sort).

1



5. Merge Sort

(Ch. 6)

(a) From 1945? Worst case: n log n. Average case: n log n.

(b) Divide list in half

(c) Recursively call MergeSort on each half

(d) Merge the two sorted halves.

6. Quick Sort

(Ch. 15.2)

(a) From 1961? Worst case: n2. Average case: n log n

(b) Like MergeSort, but ...

(c) Break up into less and more than the pivot

(d) Note: Still recursively do each half, but now do “in-place” movements, avoiding the
merge step.

2


