CSI 33 LECTURE NOTES (Ojakian)

Topic 10: Hash Tables

OUTLINE (References: 13.5)

1. Hash Tables

2. Hash Functions

1. The Motivation

(a) Consider typical Python Dictionary: Many keys, uncertain which will be used. How keep the space used efficient.

PROBLEM 1. Consider trying to code a Python Dictionary from scratch. Suppose the keys are all the 5 letter words (say all CAPS). Suppose you want to represent the Dictionary as an array. Consider the following issues:

- i. How long would your array need to be to accommodate all the keys?
- *ii.* Suppose you typically just use a small number of keys at any one time. What is wasteful in our representation?
- iii. How do you get from a key to an array location quickly? (called "hash function")

2. Simple Hash Table and the Collision Issue

- (a) Hash Table:
 - i. Set of allowed keys
 - ii. Array of some choosen length (can grow)
 - iii. Hash function: KEYS to Array Indices
 - iv. Mechanism for growing the array when it runs short on space
 - v. Mechanism for dealing with collisions?! (worry about later ...)
- (b)

PROBLEM 2. Suppose your keys are all pairs of integers (x, y) where $1 \le x, y \le 10$.

- i. How many keys are there?
- ii. Suppose we use the hash function $H((x, y)) = x * y \mod 10$. Consider a sequence of calls to the hash function, determining which cause a collision.
- *iii. Make up another Hash function*
- (c) Making a simple Hash Table

PROBLEM 3. Write the code for Problem 1, creating a simple Hash Table for it.

3. Collision Issue: Chaining

PROBLEM 4. Consider the Hash Table example in Problem 2. Choose a series of hash calls with collisions and show the resulting Hash Table, when Chaining is used to deal with collisions.

PROBLEM 5. What is the Theta analysis for Chaining, worst-case and "typical" case?

PROBLEM 6. See the program for the Chaining solution.

4. Collision Issue: Open Addressing (like Linear Probing)

PROBLEM 7. Consider the Hash Table example in Problem 2. Choose a series of hash calls with collisions and show the resulting Hash Table, when Open Addressing is used to deal with collisions.

PROBLEM 8. What is the Theta analysis for Open Addressing, worst-case and "typical" case?

PROBLEM 9. See the program for the Open Addressing Solution.