
Kerry Ojakian’s CSI 33 Class
Due Date: Tuesday September 24 in class

HW #1

General Instructions: Write problems 1 to 5 on paper to hand in. Problem 6 is a program
- put it in your Dropbox in the folder HomeWork, in a new folder called HW01.
Remember: Do not copy your work from someone or from some online source.

The Assignment

1. (a) If a computer is capable of performing one billion operations per second, how long
would it take to execute an algorithm that requires 2n operations for an input of
n = 100 elements?

(b) If a computer is capable of performing one billion operations per second, how long
would it take to execute an algorithm that requires n2 operations on an input of
n = 1, 000, 000. How long would it take if the algorithm requires n3 operations?

2. Textbook Chapter 1, page 36 - Do exercise 8.

3. Consider the following list: [3, 7, 8, 10, 11, 15, 20].

Carry out the Binary Search algoirthm on the list, first when searching for the number
7, then when searching for the number 18. In both cases, show every step (i.e. the
result of every recursive call to Binary Search).

Note: Use the same convention we did in class - when finding the middle element of
an even length list, choose the left position from the 2 possible middle positions

4. Consider the following 5 functions:

(0.01)(1.2)n, 10n2, 1000n, 100 log2(n), n3.

Put them in order, in terms of Big O growth rate. Justify your answer by finding a
single number n for which their values follow this order when this number is plugged
in (justifying your answer).

5. Show that any function which is O(100n) is also O(n), and vice versa. Show that any
function which is O(n) is also O(n2), but show that the vice-versa is false. (While I do
not require full blown proofs, these should be precise and convincing explanations)
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6. Consider the following Python class

(USE JUYPTER NOTEBOOK FOR THIS PROBLEM):

class Polynomial:

def __init__(self, c, e):

self.coeff = c

self.exp = e

def evaluate(self, x):

return self.coeff * (x ** self.exp)

The class Polynomial is expected to take two positive integers (c and e) as input. It
then represents the simple polynomial cxe. The evaluate method returns the value of
the polynomial at the given input. Write a Python function (must be called exactly
BigO) which takes as input p1, p2,m, where p1 and p2 are of type Polynomial, and m
is a positive integer. The function should return either a positive integer or None, as
follows: If there is a least positive integer n such that p1(x) ≤ p2(x) for all integers
from n ≤ x ≤ m, then n is returned; otherwise (if there is no such integer) None is
returned.

Example: Suppose p1 = Polynomial(3, 1) and p2 = Polynomial(1, 2), so p1 represents
the polynomial 3x and p2 represents the polynomial x2. Suppose we call BigO(p1,
p2, 7). Notice that p1(1) = 3 > 1 = p2(1) and p1(2) = 6 > 4 = p2(2), however
p1(3) = 9 ≤ 9 = p2(3), and for integers x ≥ 3, p1(x) ≤ p2(x). Thus, n = 3 is the least
positive integer such that p1(x) ≤ p2(x) for all integers from 3 to 7, so 3 is returned.

Example: With the same p1, p2, and m, if we reverse p1 and p2, to call BigO(p2,
p1, 7), then the function should return None. The reason for this is that p2(x) > p1(x)
when x is at least 4, so we can find no suitable n that works up till m = 7.

The Point: This is a simple “Big O” checker: In the above examples, p1 is O(p2) but
p2 is not O(p1).
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