CSI 33 Fall 2024 Review PROBLEMS (Ojakian)

1. Recall that we can build a binary tree using the following class:

class TreeNode:
def _ _init_ (self, data, left, right):
self.item = data
self.left = left
self.right = right

For example, we can build a tree with a root and 3 other nodes as follows:

root = TreeNode (5, None, None)
nl = TreeNode (4, None, None)
n2 = TreeNode (3, None, None)
n3 = TreeNode (7, None, None)
root.left = nl

root.right = n2

nl.right = n3

(a) Draw the tree in the above example. Is the tree full? It is complete? Is it any of the data structures we have
discussed in the course (heap, BST, etc), and why or why not?

(b) Write the definition of a function sumPath which takes two inputs (a binary string P and the root node of a
tree). Start at the root node, and move down the tree according to the directions in string P (i.e. a ‘0’ means
move left, and a ‘1’ means move right), summing all the item values. Then return this value. For example,
in the above tree sumPath (*01’, root) should return 16 since 5+4+7 = 16.

You can assume that the tree at least has a root node and that the string P describes a valid way to move
through the tree. Your function must work for any binary tree, not just the example above.

(c) Write the definition of a function countNodes which takes one input (the root node of a tree) and returns the
number of nodes in the tree. For example, in the above tree countNodes (root) should return 3 since there
are 3 nodes in the tree

2. Do the countNodes function from above but for our C++ ListNode.

3. Consider the binary tree data types: BST, Min Heap, Max Heap. Give 3 examples, where each example has 4
nodes and is exactly one the last data types.

4. Give an example of a BST which is not an AVL tree. What is the fewest number of nodes for which this is possible?

5. Give an example of an AVL tree which is full, one which is complete but not full, and one which is not even
complete.

6. Make a diagram of a Linked List with the elements 5, 3, 0. Code it up from scratch just using the ListNode class
- do this in Python and in C++ (in C++ we use pointers). Try the following, making a diagram, and coding it up
in Python and C++. Try to do it by just referring to the “head” pointer and using the links. When deleting in C++,
make sure you avoid memory leaks.

(a) Make a diagram to show ALL the steps for inserting a 7 between the 3 and the 0.



10.

11.

(b) Make a diagram to show ALL the steps for inserting a 9 at the end of the list.

(c) Make a diagram to show ALL the steps for inserting a 2 at the beginning of the list.

(d) Show ALL the steps for deleting the third node.

(e) Show ALL the steps for deleting the last node.

(f) Show ALL the steps for deleting the first node.

. Write a C++ function minL(head) which takes the ListNode pointer head as input and returns the minimum integer

in the linked list.

. Write a Python function which takes in a Queue and a Stack as input and checks if the second from the front

element of the Queue is equal to the second from the top element of the Stack. The Stack and Queue should be
unchanged after the function call. And you can only use the 4 standard methods for Stack (push, etc) and the 4
standard ones for Queue (enqueue, etc).

. Do a Theta analysis of your last program.

Write a Python function which takes in a list of Queues and returns true if they all have the same front value, and
false otherwise.

Write a Python function which takes in a Queue and a Stack and returns true if their elements are the same, where
we read a Queue front to back, and a Stack from top to bottom. Neither should be changed after the function call.



