CSI 32 LECTURE NOTES (Ojakian)

Topic 10: Functional Recursion

OUTLINE

(References: 11.3, 11.4)

1. Functional Recursion
2. Binary Search
3. Examples

PROBLEM 1. Write a function that computes the factorial. Do it in two ways: First with loops and then with functional recursion.

PROBLEM 2. Calculate the maximum of a list using recursion (without using the max function).

2. Functional Recursion

(a) Must have sufficient base cases.
(b) Must make "progress" towards base case
(c) Strategy:
i. Calculates base case(s)
ii. Non base cases: Calculated correctly assuming the simpler case calculates correctly.
(d)
PROBLEM 3. Use recursion to find the sum of the squares of a list of numbers.
PROBLEM 4. Let $P(k, n)=$ number of unordered partitions of n into positive integers that are all at least k. Note the following recurrence:

$$
P(k, n)=P(k+1, n)+P(k, n-k)
$$

i. Calculate $P(2,5)$ using the definition.
ii. Determine base cases for the recurrence.
iii. Calculate $P(2,5)$ using the recurrence and the base cases.
iv. Write a recursive program to calculate $P(k, n)$.
v. Make a rough calculation of "how long" the program takes to execute.
3. Binary Search

PROBLEM 5.

(a) In the worst case, how long does it take to search a list to determine whether or not it contains a given value?
(b) Write a program that implements Binary Search to search a sorted list in order to determine if a given value is in the list or not.

