

CSI 32
Lecture 15

Chapter 11 Recursion

11.3 Functional Recursion

11.4 Binary Search

CSI 32
11.3 Functional Recursion

Functional recursion is a method of defining
functions in which the function being defined is
applied within its own definition.

Example 1: Fibonacci sequence:
F(0)=1 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1 (recursive def.)

Example 2: Factorial

Recall that usually we have this definition:
n! = 1*2*3*4*5*...*(n-2)*(n-1)*n

CSI 32
11.3 Functional Recursion

Functional recursion is a method of defining
functions in which the function being defined is
applied within its own definition.

Example 1: Fibonacci sequence:
F(0)=1 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1 (recursive def)

Example 2: Factorial:

Recall that usually we have this definition:
n! = 1*2*3*4*5*...*(n-2)*(n-1)*n

Note (n-1)!

CSI 32
11.3 Functional Recursion

Functional recursion is a method of defining
functions in which the function being defined is
applied within its own definition.

Example 1: Fibonacci sequence:
F(0)=1 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1 (recursive def.)

Example 2: Factorial:

Recall that usually we have this definition:
n! = 1*2*3*4*5*...*(n-2)*(n-1)*n

Therefore we can give a recursive definition: 1! = 1
n! = n*(n-1)!

CSI 32
11.3 Functional Recursion

Let's see the program that finds factorial of a number,
using recursive definition: 1! = 1 n! = n*(n-1)!

Here is a draft of the program:

def factorial(n):
 if n == 1: return 1

 else:
 return n*factorial(n-1)

def main():
 n=input('please, input n:')

 F=factorial(n)

 print("%d! = %d"%(n,F))

main()

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__

factorial(4)

factorial(3)

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

factorial(2)

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
2*1=2

2

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
2*1=2

23*2=6

6

CSI 32
11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

 return 1
 else:
 return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
2*1=2

23*2=6

4*6=24
6

24

CSI 32
11.3 Functional Recursion

See the program factorial_rec.py

CSI 32
11.3 Functional Recursion

Another example of recursive function:
Ackermann function or Ackermann–Péter function.

 n+ 1 if m=0
A(m,n) = A(m-1,1) if m>0 and n=0

 A(m-1,A(m,n-1)) if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2

CSI 32
11.3 Functional Recursion

Another example of recursive function:
Ackermann function or Ackermann–Péter function.

 n+ 1 if m=0
A(m,n) = A(m-1,1) if m>0 and n=0

 A(m-1,A(m,n-1)) if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3

CSI 32
11.3 Functional Recursion

Another example of recursive function:
Ackermann function or Ackermann–Péter function.

 n+ 1 if m=0
A(m,n) = A(m-1,1) if m>0 and n=0

 A(m-1,A(m,n-1)) if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3
A(1,2) = A(0, A(1,1))=A(0,3)=4

CSI 32
11.3 Functional Recursion

Another example of recursive function:
Ackermann function or Ackermann–Péter function.

 n+ 1 if m=0
A(m,n) = A(m-1,1) if m>0 and n=0

 A(m-1,A(m,n-1)) if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3
A(1,2) = A(0, A(1,1))=A(0,3)=4
A(2,1) = A(1, A(2,0))=A(1,3)=A(0, A(1,2))=A(0,4)=5

CSI 32
11.3 Functional Recursion

Another example of recursive function:
Ackermann function or Ackermann–Péter function.

 n+ 1 if m=0
A(m,n) = A(m-1,1) if m>0 and n=0

 A(m-1,A(m,n-1)) if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3
A(1,2) = A(0, A(1,1))=A(0,3)=4
A(2,1) = A(1, A(2,0))= A(1,3)=A(0, A(1,2))=A(0,4)=5
A(3,2) = A(2,A(3,1))=A(2,A(2,A(3,0)))=A(2,A(2,A(2,1)))=

A(2,A(2,5))=A(2,A(1,A(2,4)))=A(2,A(1,A(1,A(2,3))))=
A(2,A(1,A(1,A(1,A(2,2))))=A(2,A(1,A(1,A(1,A(1,A(2,1))))))=
A(2,A(1,A(1,A(1,A(1,5)))))=A(2,A(1,A(1,A(1,A(0,A(1,4))))))=
A(2,A(1,A(1,A(1,A(0,A(0,A(1,3)...)=
A(2,A(1,A(1,A(1,A(0,A(0,A(0,A(1,2))...)=

=A(2,A(1,A(1,A(1,A(0,A(0,A(0,4)...)=A(2,A(1,A(1,A(1,A(0,A(0,5)...)=
A(2,A(1,A(1,A(1,A(0,6)...)=A(2,A(1,A(1,A(1,7))))=A(2,A(1,A(1,A(0,A(1,6))
)))=A(2,A(1,A(1,A(0,A(0,A(1,5)...)=A(2,A(1,A(1,A(0,A(0,A(0,A(1,4)...)=
A(2,A(1,A(1,A(0,A(0,A(0,A(0,A(1,3)...)=
A(2,A(1,A(1,A(0,A(0,A(0,A(0,A(0,A(1,2)...)=
A(2,A(1,A(1,A(0,A(0,A(0,A(0,A(0,4)...)=A(2,A(1,A(1,A(0,A(0,A(0,A(0,5)...)
=A(2,A(1,A(1,A(0,A(0,A(0,6)...)=A(2,A(1,A(1,A(0,A(0,7)...)=
A(2,A(1,A(1,A(0,8)...)=A(2,A(1,A(1,9)...)=A(2,A(1,A(0,A(1,8))))=
A(2,A(1,A(0,A(0,A(1,7)...)=A(2,A(1,A(0,A(0,A(0,A(1,6)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(1,5)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(1,4)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,A(1,3)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(1,2)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,A(0,4)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,5)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,6)...)=A(2,A(1,A(0,A(0,A(0,A(0,7)...)=
A(2,A(1,A(0,A(0,A(0,8)...)=A(2,A(1,A(0,A(0,9))))=A(2,A(1,A(0,10)))=
A(2,A(1,11))=A(2,A(0,A(1,10)))=A(2,A(0,A(0,A(1,9))))=
A(2,A(0,A(0,A(0,A(1,8)...)=A(2,A(0,A(0,A(0,A(1,8)...)=
A(2,A(0,A(0,A(0,A(0,A(1,7)...)=A(2,A(0,A(0,A(0,A(0,A(0,A(1,6)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(1,5)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(1,4)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(1,3)...)=

CSI 32

A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(0,5)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,6)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,7)...)=A(2,A(0,A(0,A(0,A(0,A(0,8)...)=
A(2,A(0,A(0,A(0,A(0,9)...)=A(2,A(0,A(0,A(0,10)...)=A(2,A(0,A(0,11)...)=
A(2,A(0,12)...)=A(2,13)...)=A(1,A(2,12))=A(1,A(1,A(2,11)))=
A(1,A(1,A(1,A(2,10))))=A(1,A(1,A(1,A(1,A(2,9)))))=
A(1,A(1,A(1,A(1,A(1,A(2,8)...)=A(1,A(1,A(1,A(1,A(1,A(1,A(2,7)...)=
A(1,A(1,A(1,A(1,A(1,A(1,A(1,A(2,6)...)= … = 29

CSI 32

CSI 32 11.4 Binary Search
A binary search algorithm locates the position of an element
(a number, a letter, a word, ...) in a sorted list.

It inspects the middle element of the sorted list:
if equal to the sought value,

then the position has been found;
otherwise,

the lower(left) half or upper(right) half is chosen for
further searching based on:
whether the sought value is less than or greater than
the middle element.

This method reduces the number of elements needed to be
checked by a factor of two each time, and finds the sought
value if it exists in the list or if not determines "not present".

Complexity: logarithmic
i.e. if we start with n elements, the algorithm will terminate
in at most k  log

2
n steps, where k is a constant.

CSI 32
11.4 Binary Search

Our book has a nice example with lexicon (please, take
a look at it). We will deal with numbers in class.

Input:  a sorted list of numbers
 (integers of floating point numbers),

  a number to find
 (may be not present in the list)

Output: location of the element in the list (if present),
 'Not in the list' (if not present)

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167] find: 7

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167] find: 7

Number of elements if the array: 11,
start index = 0,
stop index = 10

start stop

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167] find: 7

Number of elements if the array: 11,
start index = 0,
stop index = 10

Middle element:

 or (0+10) // 2 =5th

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167] find: 7

Number of elements if the array: 11,
start index = 0,
stop index = 10

Middle element:

 or (0+10) // 2 =5th

5th element  19 = 7  the number we are looking for ? No

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167] find: 7

Number of elements if the array: 11,
start index = 0,
stop index = 10

Middle element:

 or (0+10) // 2 =5th

5th element  19 = 7  the number we are looking for ? No

19  7 ? True

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167] find: 7

Number of elements if the array: 11,
start index = 0,
stop index = 10

Middle element:

 or (0+10) // 2 =5th

5th element  19 = 7  the number we are looking for ? No

19  7 ? True therefore take the left part (with 19)

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop

CSI 32
11.4 Binary Search

[1,7,9,12,17,19] find: 7

Number of elements in the “new” array (sub-array): 6,
start = 0,
stop = 5

start stop

CSI 32
11.4 Binary Search

[1,7,9,12,17,19] find: 7

Number of elements in the “new” array (sub-array): 6,
start = 0,
stop = 5

Middle element: or (0+5)//2 = 2nd

2nd element  9 = 7  the number we are looking for? No

start stop

⌊
(0+5)

2
⌋=2

CSI 32
11.4 Binary Search

[1,7,9,12,17,19] find: 7

Number of elements in the “new” array (sub-array): 6,
start = 0,
stop = 5

Middle element: or (0+5)//2 = 2nd

2nd element  9 = 7  the number we are looking for? No

9  7 ? True

start stop

⌊
(0+5)

2
⌋=2

CSI 32
11.4 Binary Search

[1,7,9,12,17,19] find: 7

Number of elements in the “new” array (sub-array): 6,
start = 0,
stop = 5

Middle element: or (0+5)//2 = 2nd

2nd element  9 = 7  the number we are looking for? No

9  7 ? True therefore take the left part (with 9)

start stop

⌊
(0+5)

2
⌋=2

CSI 32
11.4 Binary Search

[1,7,9] find: 7

Number of elements in the sub-array: 3,
start = 0,
stop = 2

start stop

CSI 32
11.4 Binary Search

[1,7,9] find: 7

Number of elements in the sub-array: 3,
start = 0,
stop = 2

Middle element: or (0+2) // 2 = 1st⌊
(0+2)

2
⌋=1

start stop

CSI 32
11.4 Binary Search

[1,7,9] find: 7

Number of elements in the sub-array: 3,
start = 0,
stop = 2

Middle element: or (0+2) // 2 = 1st

1st element  7 = 7  the number we are looking for? Yes

Stop, return index 1.

⌊
(0+2)

2
⌋=1

start stop

CSI 32
11.4 Binary Search

See the program binary_search.py

Homework Assignment
Recall Fibonacci numbers/sequence :

F(0)=1 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1 (recursive definition)

Write a program, that for a given non-negative integer n, displays
n first Fibonacci numbers. Print all the Fibonacci function calls.

Here is a sketch of the program (Fibonacci calls are not printed):
def Fibonacci(n):

if n == 0:
...

elif n == 1:
...

else:
...

def main():
n = eval(input("Please, input any non-negative

 integer:"))

 for i in range(n):
 print(Fibonacci(i)) next slide →

Similar to example with Factorial Function (recursive definition) (slides
6 – 13) draw a figure of Fibonacci Function call on n=5

Suggestion: it is probably worth doing it as a tree:

Homework Assignment

return F(4) + F(3)

F(5)

 F(4) F(3)

return ... return ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

