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Lecture 15

Chapter 11 Recursion
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11.3 Functional Recursion

Functional recursion  is a method of defining 
functions in which the function being defined is 
applied within its own definition.

Example 1: Fibonacci sequence:
F(0)=1     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1  (recursive def.)

Example 2: Factorial

Recall that usually we have this definition:
n! = 1*2*3*4*5*...*(n-2)*(n-1)*n
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11.3 Functional Recursion

Functional recursion  is a method of defining 
functions in which the function being defined is 
applied within its own definition.

Example 1: Fibonacci sequence:
F(0)=1     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1   (recursive def)

Example 2: Factorial:

Recall that usually we have this definition:
n! = 1*2*3*4*5*...*(n-2)*(n-1)*n

Note (n-1)!
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11.3 Functional Recursion

Functional recursion  is a method of defining 
functions in which the function being defined is 
applied within its own definition.

Example 1: Fibonacci sequence:
F(0)=1     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1  (recursive def.)

Example 2: Factorial:

Recall that usually we have this definition:
n! = 1*2*3*4*5*...*(n-2)*(n-1)*n

Therefore we can give a recursive definition: 1! = 1
n! = n*(n-1)!
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11.3 Functional Recursion

Let's see the program that finds factorial of a number, 
using recursive definition:        1! = 1 n! = n*(n-1)!

Here is a draft of the program:

def factorial(n):
 if n == 1: return 1

    else:
        return n*factorial(n-1)

def main():
    n=input('please, input n:')

    F=factorial(n)

    print("%d! = %d"%(n,F))
       
main()    
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__

factorial(4)

factorial(3)
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

factorial(2)
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
2*1=2

2
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
2*1=2

23*2=6

6
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11.3 Functional Recursion

Let's trace the call of factorial(4):

def factorial(n):
 if n == 1:

        return 1
    else:
        return n*factorial(n-1)

n=4

return
4*__ n=3

return
3*__

factorial(4)

factorial(3)

n=2

return
2*__

factorial(2)

factorial(1)
n=1

return
1

1
2*1=2

23*2=6

4*6=24
6

24



 

 

CSI 32
11.3 Functional Recursion

See the program factorial_rec.py   
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11.3 Functional Recursion

Another example of recursive function: 
Ackermann function or Ackermann–Péter function.

    n+ 1   if m=0
A(m,n) =    A(m-1,1)   if m>0 and n=0

    A(m-1,A(m,n-1))   if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
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11.3 Functional Recursion

Another example of recursive function: 
Ackermann function or Ackermann–Péter function.

    n+ 1   if m=0
A(m,n) =    A(m-1,1)   if m>0 and n=0

    A(m-1,A(m,n-1))   if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3



 

 

CSI 32
11.3 Functional Recursion

Another example of recursive function: 
Ackermann function or Ackermann–Péter function.

    n+ 1   if m=0
A(m,n) =    A(m-1,1)   if m>0 and n=0

    A(m-1,A(m,n-1))   if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3
A(1,2) = A(0, A(1,1))=A(0,3)=4
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11.3 Functional Recursion

Another example of recursive function: 
Ackermann function or Ackermann–Péter function.

    n+ 1   if m=0
A(m,n) =    A(m-1,1)   if m>0 and n=0

    A(m-1,A(m,n-1))   if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3
A(1,2) = A(0, A(1,1))=A(0,3)=4
A(2,1) = A(1, A(2,0))=A(1,3)=A(0, A(1,2))=A(0,4)=5
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11.3 Functional Recursion

Another example of recursive function: 
Ackermann function or Ackermann–Péter function.

    n+ 1   if m=0
A(m,n) =    A(m-1,1)   if m>0 and n=0

    A(m-1,A(m,n-1))   if m>0 and n>0

This function has only recursive definition, and it grows very fast.

Let's see how it works:
A(0,4) = 5 A(0,7) = 8 A(1,0) = A(0,1) = 2
A(2,0) = A(1,1) = A(0, A(1,0))=A(0,2)=3
A(1,2) = A(0, A(1,1))=A(0,3)=4
A(2,1) = A(1, A(2,0))= A(1,3)=A(0, A(1,2))=A(0,4)=5
A(3,2) = A(2,A(3,1))=A(2,A(2,A(3,0)))=A(2,A(2,A(2,1)))=

A(2,A(2,5))=A(2,A(1,A(2,4)))=A(2,A(1,A(1,A(2,3))))=
A(2,A(1,A(1,A(1,A(2,2))))=A(2,A(1,A(1,A(1,A(1,A(2,1))))))=
A(2,A(1,A(1,A(1,A(1,5)))))=A(2,A(1,A(1,A(1,A(0,A(1,4))))))=
A(2,A(1,A(1,A(1,A(0,A(0,A(1,3)...)=
A(2,A(1,A(1,A(1,A(0,A(0,A(0,A(1,2))...)=



 

 

=A(2,A(1,A(1,A(1,A(0,A(0,A(0,4)...)=A(2,A(1,A(1,A(1,A(0,A(0,5)...)=
A(2,A(1,A(1,A(1,A(0,6)...)=A(2,A(1,A(1,A(1,7))))=A(2,A(1,A(1,A(0,A(1,6))
)))=A(2,A(1,A(1,A(0,A(0,A(1,5)...)=A(2,A(1,A(1,A(0,A(0,A(0,A(1,4)...)=
A(2,A(1,A(1,A(0,A(0,A(0,A(0,A(1,3)...)=
A(2,A(1,A(1,A(0,A(0,A(0,A(0,A(0,A(1,2)...)=
A(2,A(1,A(1,A(0,A(0,A(0,A(0,A(0,4)...)=A(2,A(1,A(1,A(0,A(0,A(0,A(0,5)...)
=A(2,A(1,A(1,A(0,A(0,A(0,6)...)=A(2,A(1,A(1,A(0,A(0,7)...)=
A(2,A(1,A(1,A(0,8)...)=A(2,A(1,A(1,9)...)=A(2,A(1,A(0,A(1,8))))=
A(2,A(1,A(0,A(0,A(1,7)...)=A(2,A(1,A(0,A(0,A(0,A(1,6)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(1,5)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(1,4)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,A(1,3)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(1,2)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,A(0,4)...)=
A(2,A(1,A(0,A(0,A(0,A(0,A(0,A(0,5)...)= 
A(2,A(1,A(0,A(0,A(0,A(0,A(0,6)...)=A(2,A(1,A(0,A(0,A(0,A(0,7)...)=
A(2,A(1,A(0,A(0,A(0,8)...)=A(2,A(1,A(0,A(0,9))))=A(2,A(1,A(0,10)))=
A(2,A(1,11))=A(2,A(0,A(1,10)))=A(2,A(0,A(0,A(1,9))))=
A(2,A(0,A(0,A(0,A(1,8)...)=A(2,A(0,A(0,A(0,A(1,8)...)=
A(2,A(0,A(0,A(0,A(0,A(1,7)...)=A(2,A(0,A(0,A(0,A(0,A(0,A(1,6)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(1,5)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(1,4)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(1,3)...)=
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A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,A(0,5)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,A(0,6)...)=
A(2,A(0,A(0,A(0,A(0,A(0,A(0,7)...)=A(2,A(0,A(0,A(0,A(0,A(0,8)...)=
A(2,A(0,A(0,A(0,A(0,9)...)=A(2,A(0,A(0,A(0,10)...)=A(2,A(0,A(0,11)...)=
A(2,A(0,12)...)=A(2,13)...)=A(1,A(2,12))=A(1,A(1,A(2,11)))=
A(1,A(1,A(1,A(2,10))))=A(1,A(1,A(1,A(1,A(2,9)))))=
A(1,A(1,A(1,A(1,A(1,A(2,8)...)=A(1,A(1,A(1,A(1,A(1,A(1,A(2,7)...)=
A(1,A(1,A(1,A(1,A(1,A(1,A(1,A(2,6)...)= … = 29
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CSI 32 11.4 Binary Search
A binary search algorithm locates the position of an element 
(a number, a letter, a word, ...) in a sorted list.

It inspects the middle element of the sorted list: 
if equal to the sought value, 

then the position has been found; 
otherwise, 

the lower(left) half or upper(right) half is chosen for
further searching based on: 
whether the sought value is less than or greater than 
the middle element. 

This  method reduces the number of elements needed to be 
checked by a factor of two each time, and finds the sought 
value if it exists in the list or if not determines "not present".

Complexity: logarithmic
i.e. if we start with n  elements, the algorithm will terminate 
in at most k  log

2
n steps, where k is a constant.
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11.4 Binary Search

Our book has a nice example with lexicon (please, take 
a look at it). We will deal with numbers in class.

Input:   a sorted list of numbers 
           (integers of floating point numbers),

     a number to find 
            (may be not present in the list)

Output: location of the element in the list (if present),
    'Not in the list' (if not present)
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11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167]  find: 7
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11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167]  find: 7

Number of elements if the array: 11, 
start index = 0, 
stop index = 10

start stop
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11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167]  find: 7

Number of elements if the array: 11, 
start index = 0, 
stop index = 10

Middle element:  
  
                                                                or (0+10) // 2 =5th  

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop
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11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167]  find: 7

Number of elements if the array: 11, 
start index = 0, 
stop index = 10

Middle element:  
  
                                                                or (0+10) // 2 =5th  

5th element  19 = 7  the number we are looking for ? No

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop
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11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167]  find: 7

Number of elements if the array: 11, 
start index = 0, 
stop index = 10

Middle element:  
  
                                                                or (0+10) // 2 =5th  

5th element  19 = 7  the number we are looking for ? No

19  7 ?   True

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop



 

 

CSI 32
11.4 Binary Search

Example: binary search algorithm on the following input:

[1,7,9,12,17,19,23,45,67,123,167]  find: 7

Number of elements if the array: 11, 
start index = 0, 
stop index = 10

Middle element:  
  
                                                                or (0+10) // 2 =5th  

5th element  19 = 7  the number we are looking for ? No

19  7 ?   True therefore  take the left part (with 19)

⌊
(start+stop)

2
⌋=⌊

(0+10)

2
⌋=5

start stop
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11.4 Binary Search

[1,7,9,12,17,19]      find: 7

Number of elements in the “new” array (sub-array): 6, 
start = 0, 
stop = 5

start stop
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11.4 Binary Search

[1,7,9,12,17,19]      find: 7

Number of elements in the “new” array (sub-array): 6, 
start = 0, 
stop = 5

Middle element:                or   (0+5)//2 = 2nd

2nd element  9 = 7  the number we are looking for? No

start stop

⌊
(0+5)

2
⌋=2
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11.4 Binary Search

[1,7,9,12,17,19]      find: 7

Number of elements in the “new” array (sub-array): 6, 
start = 0, 
stop = 5

Middle element:                or   (0+5)//2 = 2nd

2nd element  9 = 7  the number we are looking for? No

9  7 ?  True

start stop

⌊
(0+5)

2
⌋=2
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11.4 Binary Search

[1,7,9,12,17,19]      find: 7

Number of elements in the “new” array (sub-array): 6, 
start = 0, 
stop = 5

Middle element:                or   (0+5)//2 = 2nd

2nd element  9 = 7  the number we are looking for? No

9  7 ?  True therefore  take the left part (with 9)

start stop

⌊
(0+5)

2
⌋=2
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11.4 Binary Search

[1,7,9]      find: 7

Number of elements in the sub-array: 3, 
start = 0, 
stop = 2 

start stop
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11.4 Binary Search

[1,7,9]      find: 7

Number of elements in the sub-array: 3, 
start = 0, 
stop = 2 

Middle element: or (0+2) // 2 = 1st⌊
(0+2)

2
⌋=1

start stop
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11.4 Binary Search

[1,7,9]      find: 7

Number of elements in the sub-array: 3, 
start = 0, 
stop = 2 

Middle element: or (0+2) // 2 = 1st

1st element  7 = 7   the number we are looking for?  Yes

Stop, return index 1.

⌊
(0+2)

2
⌋=1

start stop
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11.4 Binary Search

See the program binary_search.py



  

Homework Assignment
Recall Fibonacci numbers/sequence : 

F(0)=1     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1      (recursive definition)

Write a program, that for a given non-negative integer n, displays 
n first Fibonacci numbers. Print all the Fibonacci function calls.

Here is a sketch of the program (Fibonacci calls are not printed):
def Fibonacci(n):

if n == 0:
...

elif n == 1:
...

else:
...

def main():
n = eval(input("Please, input any non-negative

                                          integer:"))

   for i in range(n):
   print(Fibonacci(i)) next slide → 



  

Similar to example with Factorial Function (recursive definition) (slides 
6 – 13 ) draw a figure of Fibonacci Function call on n=5

Suggestion: it is probably worth doing it as a tree:

Homework Assignment

return F(4) + F(3)

F(5)

 F(4) F(3)

return ... return ...
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