Kerry Ojakian’s CSI 32 Class
HW #1

General Instructions:

e Homework must be put in a your dropbox folder; if there are multiple parts, create

a single folder for the assignment. Make sure you give clear names to your files and
folders.

e Remember that you must work on your own without copying from anyone (that includes
classmates and tutors).

The Assignment

1. Write a function countA which takes a dictionary as input. You can assume that the
values are strings (and the keys may be anything). The function counts the number of
values which start with the letter A (lower case or capital). then returns this number.

Example: If the input to countA is the dictionary {1 : “Ace”, “a” : “zo0”, “z" :

“also”}, then the function should return 2 because there are two value strings that
start with an A: ‘Ace’ and ‘also’.

2. Textbook: Exercise 6.5 (p.233). Also add a setMonth method which takes a single
month name as a parameter and resets self._ month to the appropriate integer between
1 and 12. If an invalid month is entered, then nothing should be changed.

3. Textbook: Read about the Fraction class in the book then do Exercises 6.10 and 6.11
(p233). Do not use any imported fraction class, just the one in the book. Important:
The methods you add should return a Fraction object!



4. Write a class definition Clock which models a 24 hour clock; you should include the
init method and the two methods described below. Clock stores a “time” value as
internal data, which should always be an integer between 0 and 24 (allowing 0, but not
24); for example, some possible values for time: 12, 0, 23. When a Clock is initialized,
any non-negative integer can be given as an input to the initializer. Clock also has
the following methods:

e addTime: Takes one non-negative integer input. This input should be added to
the current time stored in the Clock, and maintain the time between 0 and 24,
adding as we usually do for a clock. For example, if the time is 22 and we called
addTime(5) the new time is 3 (i.e. 22 + 2 gets us to 0 and then we do +3 more
to get to 3).

e getTime: Returns current time.

Example: The following code should print 22, then 3, then 5.

C = Clock(22)
print (C.getTime())
C.addTime(5)
print(C.getTime())
C.addTime(50)
print (C.getTime())

For Extra Credit:

You will add functionality to Clock so that it can keep track of days. It is always
initialized to day 0, but every time a 24 hour period is crossed, the number of days
increases by one. For example, suppose we are at day 0 and 22 hours; if addTime(5) is
called, we should be at day 1 and 3 hours. If 50 hours are now added, we are at day 3
and 5 hours. For this extra credit getTime should also return days as its first return
parameter.

Example: The same code in the example above following should now print (0,22),
then (1,3), then (3,5).



